(New page: == Inverse Fourier Transform == <math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw </math> <m...)
 
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
== Inverse Fourier Transform ==
 
== Inverse Fourier Transform ==
  
  
<math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math>
+
<math> \chi(\omega) = 2 \pi \sigma (\omega - \pi) </math>
  
<math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw </math>
+
<math> x[n] = \frac{1}{2\pi}\int_{-\infty}^{\infty} 2\pi \delta (\omega - \pi)e^{j\omega t} dw </math>
  
<math> x[n] = \int_{-\infty}^\infty \sigma(\omega - \pi)e^{j\omega t} dw </math>
+
<math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math>
 +
 
 +
<math> x[n] = \int_{\pi} e^{j\omega t} dw </math>
 +
 
 +
<math> x[n] = e^{j\pi t} </math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:49, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Inverse Fourier Transform

$ \chi(\omega) = 2 \pi \sigma (\omega - \pi) $

$ x[n] = \frac{1}{2\pi}\int_{-\infty}^{\infty} 2\pi \delta (\omega - \pi)e^{j\omega t} dw $

$ x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw $

$ x[n] = \int_{\pi} e^{j\omega t} dw $

$ x[n] = e^{j\pi t} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett