(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
<math> X(\omega) = 2\delta (\omega - 3) + 7\pi \delta(\omega - 1) \!</math> | <math> X(\omega) = 2\delta (\omega - 3) + 7\pi \delta(\omega - 1) \!</math> | ||
− | IFT: | + | ,IFT: |
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \!</math> | <math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \!</math> | ||
Line 10: | Line 19: | ||
<math> x(t) = \frac{1}{\pi }e^{3jt} + \frac{7}{2}e^{jt} \!</math> | <math> x(t) = \frac{1}{\pi }e^{3jt} + \frac{7}{2}e^{jt} \!</math> | ||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:52, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
$ X(\omega) = 2\delta (\omega - 3) + 7\pi \delta(\omega - 1) \! $ ,IFT: $ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \! $
$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\delta (\omega -3)e^{j\omega t} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} 7\pi \delta (\omega -1)e^{j\omega t} d\omega \! $
$ \int_{-\infty}^{\infty} \delta (\omega -t_0) e^{jwt} d\omega = e^{jt_0 t} \! $
$ x(t) = \frac{2}{2\pi }e^{3jt} + \frac{7\pi }{2\pi }e^{jt} \! $
$ x(t) = \frac{1}{\pi }e^{3jt} + \frac{7}{2}e^{jt} \! $