(New page: == Fourier Transform == '''Signal:''' '''<big><big><math>x(t) = 2tjwe^{-t} u(t)</math></big></big>''' <math>\mathcal{F} = \int_{-\infty}^{+\infty}x(t) e^{-jwt} \, dt = \int_{-\infty}^{+\...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== Fourier Transform ==
 
== Fourier Transform ==
  
Line 8: Line 17:
  
 
<math>\Rightarrow \mathcal{F} = \int_{1}^{0}\frac{2tjwu}{-2tjwu} \, du = \int_{1}^{0} 1\, du = \left [u] \right ]_1^0 = \left [ e^{-jwt^2} \right ]_0^\infty = -1 </math>
 
<math>\Rightarrow \mathcal{F} = \int_{1}^{0}\frac{2tjwu}{-2tjwu} \, du = \int_{1}^{0} 1\, du = \left [u] \right ]_1^0 = \left [ e^{-jwt^2} \right ]_0^\infty = -1 </math>
 +
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:37, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Fourier Transform

Signal: $ x(t) = 2tjwe^{-t} u(t) $

$ \mathcal{F} = \int_{-\infty}^{+\infty}x(t) e^{-jwt} \, dt = \int_{-\infty}^{+\infty}2tjwe^{-t} u(t) e^{-jwt} \, dt = \int_{0}^{+\infty}2tjw e^{-jwt^2} \, dt $

let $ u = e^{-jwt^2}, du = -2tjwe^{-jwt^2} dt \Rightarrow dt = \frac{du}{-2tjwe^{-jwt^2}} = \frac{du}{{-2tjwu}} $

$ \Rightarrow \mathcal{F} = \int_{1}^{0}\frac{2tjwu}{-2tjwu} \, du = \int_{1}^{0} 1\, du = \left [u] \right ]_1^0 = \left [ e^{-jwt^2} \right ]_0^\infty = -1 $



Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett