Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
Let <font size = '4'><math>\chi (w) = \frac{\pi}{j} 4\delta (w - 6) - \frac{\pi}{j} 4\delta (w + 6)</math></font>
 
Let <font size = '4'><math>\chi (w) = \frac{\pi}{j} 4\delta (w - 6) - \frac{\pi}{j} 4\delta (w + 6)</math></font>
  
Line 6: Line 16:
  
 
<math>x(t) = \frac{2}{j}e^{j6t} - \frac{2}{j}e^{-j6t} = 4[\frac{e^{j6t} - e^{-j6t}}{2j}] = 4sin(6t)</math>
 
<math>x(t) = \frac{2}{j}e^{j6t} - \frac{2}{j}e^{-j6t} = 4[\frac{e^{j6t} - e^{-j6t}}{2j}] = 4sin(6t)</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:51, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Let $ \chi (w) = \frac{\pi}{j} 4\delta (w - 6) - \frac{\pi}{j} 4\delta (w + 6) $

Then $ x(t) = \frac{1}{2\pi}\int^{\infty}_{-\infty} \chi (w) e^{jwt}dw $

$ x(t) = \frac{1}{2\pi} [\frac{4\pi}{j}\int^{\infty}_{-\infty} \delta(w-6)e^{jwt} dw - \frac{4\pi}{j} \int_{-\infty}^{\infty} \delta(w+6)e^{jwt} dw] $

$ x(t) = \frac{2}{j}e^{j6t} - \frac{2}{j}e^{-j6t} = 4[\frac{e^{j6t} - e^{-j6t}}{2j}] = 4sin(6t) $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010