(Problem 2 Fourier Transfer)
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
==Problem 2 Fourier Transfer==
 
==Problem 2 Fourier Transfer==
  
Line 10: Line 19:
  
 
<math> = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt}
 
<math> = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt}
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:30, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Problem 2 Fourier Transfer

$ x(t) = \cos{\pi t} $

$ F(x(t)) = \int_{-\infty}^\infty x(t) e^{-j\omega t}dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ \chi(\omega) = \int_{-\infty}^\infty \cos{(\pi t)} e^{-j\omega t} dt $

$ = \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} + \int_{-\infty}^\infty{ \frac{1}{2} e^{-j\pi t}e^{-j\omega t} dt} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva