(New page: == Chosen Signal to Transform == The signal we will transform here will be <math>x(t)=e^{2jt}*(u(t+4)-u(t-4))</math> ==Transform by integral== <math> = \int_{-\infty}^{\infty}e^{2jt}*(u...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== Chosen Signal to Transform ==
 
== Chosen Signal to Transform ==
 
The signal we will transform here will be  
 
The signal we will transform here will be  
Line 20: Line 29:
  
 
<math> = \frac{2sin(8 - 4\omega )}{2-\omega }\,</math>
 
<math> = \frac{2sin(8 - 4\omega )}{2-\omega }\,</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:35, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Chosen Signal to Transform

The signal we will transform here will be $ x(t)=e^{2jt}*(u(t+4)-u(t-4)) $

Transform by integral

$ = \int_{-\infty}^{\infty}e^{2jt}*(u(t+4)-u(t-4))e^{-j\omega t}dt\, $

$ = \int_{-4}^{4}e^{2jt}e^{-j\omega t}dt \, $

$ = \int_{-4}^{4}e^{2jt -j\omega t}dt\, $

$ = \int_{-4}^{4}e^{t*(2j -j\omega )}dt \, $

$ = \frac{e^{2jt - j\omega t}}{2j-j\omega}]_{-4}^{4} \, $

$ = \frac{e^{8j - 4j\omega} - e^{-8j + 4j\omega}}{2j-j\omega} \, $

$ = \frac{e^{j(8 - 4\omega )} - e^{-j(8 - 4\omega )}}{j(2-\omega )} \, $

$ = \frac{2sin(8 - 4\omega )}{2-\omega }\, $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett