(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 +
 
<math> x(t) = e^{-|t-1|} \,</math><br><br>
 
<math> x(t) = e^{-|t-1|} \,</math><br><br>
 
<math> X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{-(1+jw)t}dt</math><br><br>
 
<math> X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{-(1+jw)t}dt</math><br><br>
<math> X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]^1_{-\infty} }+{\left.\frac{-e^{1}e^{-(1+jw)t}}{1+jw}\right]^{\infty}_1 }</math><math> X(w) = e^{-1}\frac{e^{(1-jw)}}{1-jw}+e^{1}\frac{e^{(-(1+jw)}}{1+jw}</math><br><br>
+
<math> X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]^1_{-\infty} }+{\left.\frac{-e^{1}e^{-(1+jw)t}}{1+jw}\right]^{\infty}_1 }</math><math> = e^{-1}\frac{e^{(1-jw)}}{1-jw}+e^{1}\frac{e^{-(1+jw)}}{1+jw}</math><br><br>
 
<math> X(w) = \frac{e^{-jw}}{1-jw}+\frac{e^{-jw}}{1+jw}</math><br><br>
 
<math> X(w) = \frac{e^{-jw}}{1-jw}+\frac{e^{-jw}}{1+jw}</math><br><br>
 
<math> X(w) = \frac{2e^{-jw}}{1+w^2}</math><br><br>
 
<math> X(w) = \frac{2e^{-jw}}{1+w^2}</math><br><br>
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:33, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform



$ x(t) = e^{-|t-1|} \, $

$ X(w) = \int_{-\infty}^{\infty}e^{-|t-1|}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{(t-1)}e^{-jwt}dt+\int_{1}^{\infty}e^{-(t-1)}e^{-jwt}dt $

$ X(w) = \int_{-\infty}^{1}e^{-1}e^{(1-jw)t}dt+\int_{1}^{\infty}e^{1}e^{-(1+jw)t}dt $

$ X(w) = {\left.\frac{e^{-1}e^{(1-jw)t}}{1-jw}\right]^1_{-\infty} }+{\left.\frac{-e^{1}e^{-(1+jw)t}}{1+jw}\right]^{\infty}_1 } $$ = e^{-1}\frac{e^{(1-jw)}}{1-jw}+e^{1}\frac{e^{-(1+jw)}}{1+jw} $

$ X(w) = \frac{e^{-jw}}{1-jw}+\frac{e^{-jw}}{1+jw} $

$ X(w) = \frac{2e^{-jw}}{1+w^2} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood