(Fourier Transform)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
== Fourier Transform ==
 
== Fourier Transform ==
 
Signal: x(t) = <math> e^{3|t-1|}</math>
 
Signal: x(t) = <math> e^{3|t-1|}</math>
Line 10: Line 17:
  
  
... LOTS OF MATH...
+
= <math> \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} </math>
  
  
= <math> \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega}
+
= <math> \frac{4e^{-j \omega}}{4 + \omega ^2}
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:31, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Fourier Transform

Signal: x(t) = $ e^{3|t-1|} $

$ X(j \omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $

$ = \int_{1}^{\infty} e^{2|t-1|} e^{-j\omega t} dt \! $ + $ \int_{-\infty}^{1} e^{2|t-1|} e^{-j\omega t} dt \! $


= $ \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j \omega}}{2 - j \omega} $


= $ \frac{4e^{-j \omega}}{4 + \omega ^2} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett