(New page: Suppose we have a signal: :<math>e^{-2(t-1)}u(t-1)\,</math> The formula of Fourier Transform is: :<math>X(w) = \int_{-\infty}^{ \infty} x(t)e^{-jwt}dt\,</math> Substituting: :<math>X(...) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
Suppose we have a signal: | Suppose we have a signal: | ||
Line 18: | Line 26: | ||
Integrating yields: | Integrating yields: | ||
+ | |||
+ | :<math>X(w) = {\left. -\frac{e^{2-(2+jw)t}}{2+jw} \right]_{1}^{\infty}}\,</math> | ||
+ | |||
+ | :<math>X(w) = 0 - -\frac{e^{2-(2+jw)}}{2+jw} \,</math> | ||
+ | |||
+ | :<math>X(w) = \frac{e^{2-2-jw}}{2+jw} \,</math> | ||
+ | |||
+ | :<math>X(w) = \frac{e^{-jw}}{2+jw} \,</math> | ||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:31, 16 September 2013
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
Suppose we have a signal:
- $ e^{-2(t-1)}u(t-1)\, $
The formula of Fourier Transform is:
- $ X(w) = \int_{-\infty}^{ \infty} x(t)e^{-jwt}dt\, $
Substituting:
- $ X(w) = \int_{-\infty}^{ \infty} e^{-2(t-1)}u(t-1)e^{-jwt}dt\, $
From the step function, the range becomes 1 to $ \infty $, so the equation becomes:
- $ X(w) = \int_{1}^{ \infty} e^{-2(t-1)}e^{-jwt}dt\, $
- $ X(w) = \int_{1}^{ \infty} e^{2-(2+jw)t}dt\, $
Integrating yields:
- $ X(w) = {\left. -\frac{e^{2-(2+jw)t}}{2+jw} \right]_{1}^{\infty}}\, $
- $ X(w) = 0 - -\frac{e^{2-(2+jw)}}{2+jw} \, $
- $ X(w) = \frac{e^{2-2-jw}}{2+jw} \, $
- $ X(w) = \frac{e^{-jw}}{2+jw} \, $