(The Fourier Transform)
 
(11 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
== The Signal ==
 
== The Signal ==
  
  
<math>(t e^{-4t} \sin{6 \pi t}) u(t)</math>
+
<math>(t e^{-4t} \sin{6 \pi t}) u(t) \ </math>
  
  
Line 21: Line 29:
  
 
<math>X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt</math>
 
<math>X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt</math>
 +
 +
 +
<math>X(\omega)=\int_{0}^{\infty} \frac {t e^{t(j(6 \pi - \omega)-4)}}{2 j} - \frac {t e^{t(-j(6 \pi + \omega)-4)}}{2 j}dt</math>
 +
 +
 +
<math>X(\omega)= \frac{(t (j(6 \pi - \omega)-4) - 1) e^{t(j(6 \pi - \omega)-4)}}{2 j (j(6 \pi - \omega)-4)} - \frac{(t (-j(6 \pi + \omega)-4) - 1) e^{t(-j(6 \pi + \omega)-4)}}{2 j (-j(6 \pi + \omega)-4)}\bigg]_0^\infty</math>
 +
 +
 +
<math>X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)}</math>
 +
 +
 +
----
 +
==Comments/questions==
 +
*A faster/easier way to solve this problem would be to use the Multiplication Property
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:27, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


The Signal

$ (t e^{-4t} \sin{6 \pi t}) u(t) \ $


The Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{t(j(6 \pi - \omega)-4)}}{2 j} - \frac {t e^{t(-j(6 \pi + \omega)-4)}}{2 j}dt $


$ X(\omega)= \frac{(t (j(6 \pi - \omega)-4) - 1) e^{t(j(6 \pi - \omega)-4)}}{2 j (j(6 \pi - \omega)-4)} - \frac{(t (-j(6 \pi + \omega)-4) - 1) e^{t(-j(6 \pi + \omega)-4)}}{2 j (-j(6 \pi + \omega)-4)}\bigg]_0^\infty $


$ X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)} $



Comments/questions

  • A faster/easier way to solve this problem would be to use the Multiplication Property

Back to Practice Problems on CT Fourier transform

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett