(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
<math>X(\omega ) = \delta(\omega ) + \delta(\omega - 5) + \delta(\omega - 5)\,</math>
 
<math>X(\omega ) = \delta(\omega ) + \delta(\omega - 5) + \delta(\omega - 5)\,</math>
  
Line 4: Line 13:
  
 
<math> =  \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\,</math>
 
<math> =  \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\,</math>
 +
 +
<math> = \frac{1}{2\pi}*1 + \frac{1}{2\pi}*e^{5jt} + \frac{1}{2\pi}*e^{-5jt}\,</math>
 +
 +
<math> = \frac{1}{2\pi} * (1 + 2cos(5t))\,</math>
 +
 +
 +
I'll add another one when i have time
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:46, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


$ X(\omega ) = \delta(\omega ) + \delta(\omega - 5) + \delta(\omega - 5)\, $

$ x(t) = \int_{-\infty}^{\infty}X(\omega )e^{j\omega t}d\omega\, $

$ = \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega )e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega - 5)e^{j\omega t}d\omega + \frac{1}{2\pi}\int_{-\infty}^{\infty}\delta(\omega + 5)e^{j\omega t}d\omega\, $

$ = \frac{1}{2\pi}*1 + \frac{1}{2\pi}*e^{5jt} + \frac{1}{2\pi}*e^{-5jt}\, $

$ = \frac{1}{2\pi} * (1 + 2cos(5t))\, $


I'll add another one when i have time


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang