(New page: placeholder)
 
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
placeholder
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
==Question==
 +
 
 +
Specify a signal x(t) and compute its Fourier transform using the integral formula. (Make sure your signal is not trivial to transform; it should be hard enough to be on a test).
 +
 
 +
==Answer==
 +
Defining x(t):
 +
 
 +
<math> x(t) = te^{-4t}u(t-3) </math>
 +
 
 +
By the integral formula:
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>
 +
 
 +
Therefore:
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{-\infty}^{\infty}te^{-4t}u(t-3)e^{-j\omega t}\,dt\,</math>
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-4t}e^{-j\omega t}\,dt\,</math> (maybe remove)
 +
 
 +
<math> \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-t(4+ j\omega)}\,dt\,</math>
 +
 
 +
Integrating by parts
 +
 
 +
<math> \int UdV=UV - \int VdU </math>
 +
 
 +
Where
 +
<math> U=t; dU=1; V= \frac{-1}{4+j \omega} e^{-t(4+j \omega)}; dV= e^{-t(4+j \omega)} </math>
 +
 
 +
Therefore:
 +
 
 +
<math> \mathcal{X}(\omega) = \left. te^{-t(4+ j\omega)} + \frac{1}{(4+ j\omega)^2}e^{-t(4+ j\omega)}  \right]_{3}^{+\infty} </math>
 +
 
 +
<math> \mathcal{X}(\omega) = \left. (t+ \frac{1}{(4+ j\omega)^2} )e^{-t(4+ j\omega)}  \right]_{3}^{+\infty} </math>
 +
 
 +
<math> \mathcal{X}(\omega) = [0] - [(3+ \frac{1}{(4+ j\omega)^2} )e^{-3(4+ j\omega)}] </math>
 +
 
 +
Therefore:
 +
<math> \mathcal{X}(\omega) =-(3+ \frac{1}{(4+ j\omega)^2} )e^{-(12+ j3\omega)} </math>
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:30, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Question

Specify a signal x(t) and compute its Fourier transform using the integral formula. (Make sure your signal is not trivial to transform; it should be hard enough to be on a test).

Answer

Defining x(t):

$ x(t) = te^{-4t}u(t-3) $

By the integral formula:

$ \mathcal{X}(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

Therefore:

$ \mathcal{X}(\omega) = \int_{-\infty}^{\infty}te^{-4t}u(t-3)e^{-j\omega t}\,dt\, $

$ \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-4t}e^{-j\omega t}\,dt\, $ (maybe remove)

$ \mathcal{X}(\omega) = \int_{3}^{\infty}te^{-t(4+ j\omega)}\,dt\, $

Integrating by parts

$ \int UdV=UV - \int VdU $

Where $ U=t; dU=1; V= \frac{-1}{4+j \omega} e^{-t(4+j \omega)}; dV= e^{-t(4+j \omega)} $

Therefore:

$ \mathcal{X}(\omega) = \left. te^{-t(4+ j\omega)} + \frac{1}{(4+ j\omega)^2}e^{-t(4+ j\omega)} \right]_{3}^{+\infty} $

$ \mathcal{X}(\omega) = \left. (t+ \frac{1}{(4+ j\omega)^2} )e^{-t(4+ j\omega)} \right]_{3}^{+\infty} $

$ \mathcal{X}(\omega) = [0] - [(3+ \frac{1}{(4+ j\omega)^2} )e^{-3(4+ j\omega)}] $

Therefore: $ \mathcal{X}(\omega) =-(3+ \frac{1}{(4+ j\omega)^2} )e^{-(12+ j3\omega)} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett