Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier transform of a CT SIGNAL == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
==Fourier Transformations== | ==Fourier Transformations== | ||
The Fourier transformation of the signal x(t) is defined as | The Fourier transformation of the signal x(t) is defined as | ||
Line 25: | Line 34: | ||
<math>X(\omega)=\frac{6e^{-2j\omega}}{9+\omega^2}</math> | <math>X(\omega)=\frac{6e^{-2j\omega}}{9+\omega^2}</math> | ||
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:29, 16 September 2013
Example of Computation of Fourier transform of a CT SIGNAL
A practice problem on CT Fourier transform
Fourier Transformations
The Fourier transformation of the signal x(t) is defined as
$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $
Example
$ x(t)=e^{-3|t-2|} $
$ X(\omega)=\int_{-\infty}^{\infty} e^{-3|t-2|} e^{-j\omega t}dt $
$ X(\omega)=\int_{-\infty}^{2} e^{-3(-(t-2))}e^{-j\omega t}dt+\int_{2}^{\infty} e^{-3(t-2)}e^{-j\omega t}dt $
$ X(\omega)=\int_{-\infty}^{2} e^{3t-6-j\omega t}dt+\int_{2}^{\infty} e^{-3t+6-j\omega t}dt $
$ X(\omega)=e^{-6}\int_{-\infty}^{2} e^{(3-j\omega )t}dt+e^6\int_{2}^{\infty} e^{-(3+j\omega )t}dt $
$ X(\omega)=e^{-6}\frac{1}{3-j\omega}e^{(3-j\omega )t}|_{-\infty}^{2}+e^6\frac{1}{-(3+j\omega)}e^{-(3+j\omega)t}|_{2}^{\infty} $
$ X(\omega)=e^{-6}\frac{1}{3-j\omega}(e^{(3-j\omega)(2)}-e^{(3-j\omega)(-\infty)})+e^6\frac{1}{-(3+j\omega)}(e^{-(3+j\omega )(\infty)}-e^{-(3+j\omega)(2)}) $
$ X(\omega)=e^{-6}\frac{1}{3-j\omega}e^{(3-j\omega)(2)}+e^6\frac{1}{3+j\omega}e^{-(3+j\omega)(2)} $
$ X(\omega)=\frac{e^{-2j\omega}}{3-j\omega}+\frac{e^{-2j\omega}}{3+j\omega} $
$ X(\omega)=\frac{6e^{-2j\omega}}{9+\omega^2} $