(New page: ==Fourier Transformations== The Fourier transformation of the signal x(t) is defined as <math>X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt</math> ==Example== <math>x(t)=e^{-...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
==Fourier Transformations==
 
==Fourier Transformations==
 
The Fourier transformation of the signal x(t) is defined as
 
The Fourier transformation of the signal x(t) is defined as
Line 24: Line 33:
 
<math>X(\omega)=\frac{e^{-2j\omega}}{3-j\omega}+\frac{e^{-2j\omega}}{3+j\omega}</math>
 
<math>X(\omega)=\frac{e^{-2j\omega}}{3-j\omega}+\frac{e^{-2j\omega}}{3+j\omega}</math>
  
<math>X(\omega)=\frac{9e^{-2j\omega}}{9+\omega^2}</math>
+
<math>X(\omega)=\frac{6e^{-2j\omega}}{9+\omega^2}</math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:29, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Fourier Transformations

The Fourier transformation of the signal x(t) is defined as

$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $

Example

$ x(t)=e^{-3|t-2|} $

$ X(\omega)=\int_{-\infty}^{\infty} e^{-3|t-2|} e^{-j\omega t}dt $

$ X(\omega)=\int_{-\infty}^{2} e^{-3(-(t-2))}e^{-j\omega t}dt+\int_{2}^{\infty} e^{-3(t-2)}e^{-j\omega t}dt $

$ X(\omega)=\int_{-\infty}^{2} e^{3t-6-j\omega t}dt+\int_{2}^{\infty} e^{-3t+6-j\omega t}dt $

$ X(\omega)=e^{-6}\int_{-\infty}^{2} e^{(3-j\omega )t}dt+e^6\int_{2}^{\infty} e^{-(3+j\omega )t}dt $

$ X(\omega)=e^{-6}\frac{1}{3-j\omega}e^{(3-j\omega )t}|_{-\infty}^{2}+e^6\frac{1}{-(3+j\omega)}e^{-(3+j\omega)t}|_{2}^{\infty} $

$ X(\omega)=e^{-6}\frac{1}{3-j\omega}(e^{(3-j\omega)(2)}-e^{(3-j\omega)(-\infty)})+e^6\frac{1}{-(3+j\omega)}(e^{-(3+j\omega )(\infty)}-e^{-(3+j\omega)(2)}) $

$ X(\omega)=e^{-6}\frac{1}{3-j\omega}e^{(3-j\omega)(2)}+e^6\frac{1}{3+j\omega}e^{-(3+j\omega)(2)} $

$ X(\omega)=\frac{e^{-2j\omega}}{3-j\omega}+\frac{e^{-2j\omega}}{3+j\omega} $

$ X(\omega)=\frac{6e^{-2j\omega}}{9+\omega^2} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood