(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
Let the signal x(t) be equal to:
 
Let the signal x(t) be equal to:
  
 
<math>x(t) = cos(2\pi t) \,</math>
 
<math>x(t) = cos(2\pi t) \,</math>
 +
  
 
The Fourier Transform of a signal in Continuous Time is defined by:
 
The Fourier Transform of a signal in Continuous Time is defined by:
  
 
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt \,</math>
 
<math>X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt \,</math>
 +
  
 
Using this, we obtain:
 
Using this, we obtain:
  
 
<math>X(\omega) = \int_{-\infty}^{\infty}cos(2\pi t)e^{-j\omega t}dt \,</math>
 
<math>X(\omega) = \int_{-\infty}^{\infty}cos(2\pi t)e^{-j\omega t}dt \,</math>
 +
  
 
Knowing that cos(t) is equal to: <math>\frac{e^{jt}+e^{-jt}}{2}</math>:
 
Knowing that cos(t) is equal to: <math>\frac{e^{jt}+e^{-jt}}{2}</math>:
Line 18: Line 30:
 
<math>X(\omega) = \pi \delta(\omega - 2\pi) + \pi \delta(\omega - 2\pi) \,</math>
 
<math>X(\omega) = \pi \delta(\omega - 2\pi) + \pi \delta(\omega - 2\pi) \,</math>
  
 
+
----
 
+
==Comments/questions==
 
+
*Note: This could also be done knowing that the Fourier transform of <math>e^{j\omega_0 t} = 2\pi \delta(\omega - \omega_0) \,</math>.
Note: This could also be done knowing that the Fourier transform of <math>e^{j\omega_0 t} = 2\pi \delta(\omega - \omega_0) \,</math>.
+
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:29, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Let the signal x(t) be equal to:

$ x(t) = cos(2\pi t) \, $


The Fourier Transform of a signal in Continuous Time is defined by:

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt \, $


Using this, we obtain:

$ X(\omega) = \int_{-\infty}^{\infty}cos(2\pi t)e^{-j\omega t}dt \, $


Knowing that cos(t) is equal to: $ \frac{e^{jt}+e^{-jt}}{2} $:

$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{j2\pi t}+e^{-j2\pi t})e^{-j\omega t}dt \, $


$ X(\omega) = \pi \delta(\omega - 2\pi) + \pi \delta(\omega - 2\pi) \, $


Comments/questions

  • Note: This could also be done knowing that the Fourier transform of $ e^{j\omega_0 t} = 2\pi \delta(\omega - \omega_0) \, $.

Back to Practice Problems on CT Fourier transform

Alumni Liaison

EISL lab graduate

Mu Qiao