(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
<math>X(w) =  \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9) </math>
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
<math>X(w) =  \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (3j + 7) </math>
  
 
<math>x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw</math>
 
<math>x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw</math>
  
<math> = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (5j - 9)] e^{jwt} dw</math>
+
<math> = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (3j + 7)] e^{jwt} dw</math>
  
  
<math> = \frac{3j - 7}{2} \int^{\infty}_{- \infty} \delta (w -2 \pi) e^{jwt} dw + \frac (5j - 9}{2} \int^{\infty}_{- \infty} \delta (w + 2 \pi) e^{jwt} dw</math>
+
<math> = \frac{3j - 7}{2}\int^{\infty}_{- \infty}\delta (w -2\pi) e^{jwt} dw + \frac {3j + 7}{2}\int^{\infty}_{- \infty}\delta (w + 2\pi) e^{jwt} dw</math>
 +
 
 +
<math> = \frac{3j - 7}{2} e^{j2\pi t} + \frac{3j + 7}{2} e^{-j2\pi t}</math>
 +
 
 +
<math> = \frac{3j}{2} e^{j 2\pi t} - \frac{7}{2} e^{j 2\pi t} + \frac{3j}{2} e^{-j 2\pi t} + \frac{7}{2} e^{-j 2\pi t}</math>
 +
 
 +
<math> = \frac{3j(e^{j 2\pi t} + e^{-j 2\pi t})}{2} + \frac{7(- e^{j 2\pi t} + e^{-j 2\pi t})}{2}</math>
 +
 
 +
<math> = 3sin(2\pi) + 7cos(2\pi)</math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:44, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


$ X(w) = \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (3j + 7) $

$ x(t) = \frac{1}{2 \pi} \int^{\infty}_{- \infty} X(w) e^{jwt} dw $

$ = \frac{1}{2 \pi} \int^{\infty}_{- \infty} [ \pi \delta (w - 2 \pi)(3j - 7) + \pi \delta (w + 2 \pi) (3j + 7)] e^{jwt} dw $


$ = \frac{3j - 7}{2}\int^{\infty}_{- \infty}\delta (w -2\pi) e^{jwt} dw + \frac {3j + 7}{2}\int^{\infty}_{- \infty}\delta (w + 2\pi) e^{jwt} dw $

$ = \frac{3j - 7}{2} e^{j2\pi t} + \frac{3j + 7}{2} e^{-j2\pi t} $

$ = \frac{3j}{2} e^{j 2\pi t} - \frac{7}{2} e^{j 2\pi t} + \frac{3j}{2} e^{-j 2\pi t} + \frac{7}{2} e^{-j 2\pi t} $

$ = \frac{3j(e^{j 2\pi t} + e^{-j 2\pi t})}{2} + \frac{7(- e^{j 2\pi t} + e^{-j 2\pi t})}{2} $

$ = 3sin(2\pi) + 7cos(2\pi) $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang