(New page: <math>x(t)=t^3 e^{-3t} </math> <math>X(w) = \int^{\infty}_{- \infty}x(t)e^{-jwt}</math> <math>= \int^{\infty}_{- \infty} t^3 e^{-3t} e^{-jwt}</math> <math>= \int^{\infty}_{- \infty} t^3...)
 
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
<math>x(t)=t^3 e^{-3t} </math>
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
<math>x(t)=e^{-3t} u(t-3) u(t+3) </math>
  
<math>X(w) = \int^{\infty}_{- \infty}x(t)e^{-jwt}</math>
+
<math>X(w) = \int^{\infty}_{- \infty}x(t)e^{-jwt} dt</math>
  
<math>= \int^{\infty}_{- \infty} t^3 e^{-3t} e^{-jwt}</math>
+
<math>= \int^{\infty}_{- \infty} e^{-3t} u(t-3) u(t+3) e^{-jwt} dt</math>
  
<math>= \int^{\infty}_{- \infty} t^3 e^{-(3 + jw)t}</math>
+
<math>= \int^{3}_{-3} e^{-(3 + jw)t} dt</math>
  
<math>\frac{1}{3} t^4 \frac{e^{-(3 + jw)t}}{-(3 + jw)}</math>
+
<math>[\frac{e^{-(3 + jw)t}}{-(3 + jw)}]_{-3}^{3}</math>
 +
 
 +
<math>\frac{e^{-(9 + 3jw)}}{-(3 + jw)} - \frac{e^{(9 + 3jw)}}{-(3 + jw)}</math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 11:27, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


$ x(t)=e^{-3t} u(t-3) u(t+3) $

$ X(w) = \int^{\infty}_{- \infty}x(t)e^{-jwt} dt $

$ = \int^{\infty}_{- \infty} e^{-3t} u(t-3) u(t+3) e^{-jwt} dt $

$ = \int^{3}_{-3} e^{-(3 + jw)t} dt $

$ [\frac{e^{-(3 + jw)t}}{-(3 + jw)}]_{-3}^{3} $

$ \frac{e^{-(9 + 3jw)}}{-(3 + jw)} - \frac{e^{(9 + 3jw)}}{-(3 + jw)} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood