(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier transform]] | ||
+ | [[Category:inverse Fourier transform]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of inverse Fourier transform (CT signals) == | ||
+ | A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]] | ||
+ | ---- | ||
+ | |||
Compute the inverse fourier transform of the fourier transform below: | Compute the inverse fourier transform of the fourier transform below: | ||
Line 10: | Line 20: | ||
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \,</math> | <math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \,</math> | ||
− | <math>\,x(t)=\frac{1}{2\pi} e^{(j(-3\pi) - 1)t} | + | <math>\,x(t)=\frac{1}{2\pi} e^{(j(-3\pi) - 1)t}\,</math> |
+ | |||
+ | ---- | ||
+ | [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] |
Latest revision as of 11:42, 16 September 2013
Example of Computation of inverse Fourier transform (CT signals)
A practice problem on CT Fourier transform
Compute the inverse fourier transform of the fourier transform below:
$ \,\mathcal{X}(\omega)= \delta(\omega - 3\pi) e^{-t}\, $
$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \, $
$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{-t} e^{j\omega t}\,d\omega \, $
$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} \delta(\omega - 3\pi) e^{(j\omega - 1)t}\,d\omega \, $
$ \,x(t)=\frac{1}{2\pi} e^{(j(-3\pi) - 1)t}\, $