Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | |||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
CT Periodic Signal : | CT Periodic Signal : | ||
Line 30: | Line 39: | ||
Reference -* [[HW4.1 Wei Jian Chan_ECE301Fall2008mboutin]] | Reference -* [[HW4.1 Wei Jian Chan_ECE301Fall2008mboutin]] | ||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 10:09, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
CT Periodic Signal :
$ x(t) = \cos(2\pi t) + \sin(3\pi t)\, $
$ = \frac{e^{2j\pi t}}{2} + \frac{e^{-2j\pi t}}{2} + \frac{e^{3j\pi t}}{2j} - \frac{e^{-3j\pi t}}{2j} \, $
$ \omega_o \, $ = $ \pi \, $
Coefficients of signal:
$ a_2 = \frac{1}{2}\, $
$ a_{-2} = \frac{1}{2}\, $
$ a_{3} = \frac{1}{2j}\, $
$ a_{-3} = -\frac{1}{2j}\, $
Since
$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $ where
$ a_2 = a_{-2} = \frac{1}{2}\, $
$ a_{3} = -a_{-3}\, $
$ a_k = 0 , k \neq 2,-2,3,-3\, $
Reference -* HW4.1 Wei Jian Chan_ECE301Fall2008mboutin