(Problem 2: Fair Wages)
 
(45 intermediate revisions by 24 users not shown)
Line 1: Line 1:
 +
[[Category:ECE302Fall2008_ProfSanghavi]]
 +
[[Category:probabilities]]
 +
[[Category:ECE302]]
 +
[[Category:homework]]
 +
[[Category:problem solving]]
 +
 
== Instructions ==
 
== Instructions ==
 
Homework 6 can be [https://engineering.purdue.edu/ece302/homeworks/HW6FA08.pdf downloaded here] on the [https://engineering.purdue.edu/ece302/ ECE 302 course website].
 
Homework 6 can be [https://engineering.purdue.edu/ece302/homeworks/HW6FA08.pdf downloaded here] on the [https://engineering.purdue.edu/ece302/ ECE 302 course website].
Line 6: Line 12:
  
 
         <math>\mathrm{ceil}(a)</math> = <math>a</math> if <math>a</math> is an integer
 
         <math>\mathrm{ceil}(a)</math> = <math>a</math> if <math>a</math> is an integer
              = the smallest integer bigger than <math>a</math> if <math>a</math> is not an integer
+
                = the smallest integer bigger than <math>a</math> if <math>a</math> is not an integer
  
 
What is the PMF of <math>Y</math>? Is it one of the common random variables?  (Hint: for all <math>k</math>, find the quantity <math>P(Y > k)</math>. Then find the PMF)
 
What is the PMF of <math>Y</math>? Is it one of the common random variables?  (Hint: for all <math>k</math>, find the quantity <math>P(Y > k)</math>. Then find the PMF)
 +
 +
*[[Tiffany Sukwanto 6.1_ECE302Fall2008sanghavi]]
 +
 +
*[[Joshua Long 6.1_ECE302Fall2008sanghavi]]
 +
 +
*[[Justin Mauck 6.1_ECE302Fall2008sanghavi]]
  
 
== Problem 2: Fair Wages ==
 
== Problem 2: Fair Wages ==
 
``I do not have problems with anyone earning above average, as long as no one earns below average." - a quote (mistakenly attributed to) Max Weber. Can such a situation occur? Justify your answer.
 
``I do not have problems with anyone earning above average, as long as no one earns below average." - a quote (mistakenly attributed to) Max Weber. Can such a situation occur? Justify your answer.
 +
 +
*[[Brian Thomas 6.2_ECE302Fall2008sanghavi]] One possible solution
 +
*[[Gregory Pajot 6.2_ECE302Fall2008sanghavi]]
 +
*[[Virgil Hsieh 6.2_ECE302Fall2008sanghavi]]
 +
*[[Zhongtian Wang 6.2_ECE302Fall2008sanghavi]]
 +
*[[Michael Allen 6.2_ECE302Fall2008sanghavi]]
 +
*[[Christopher Wacnik 6.2_ECE302Fall2008sanghavi]]
 +
*[[Sahil Khosla 6.2_ECE302Fall2008sanghavi]]
 +
*[[AJ Hartnett 6.2 --Different answer than above!_ECE302Fall2008sanghavi]]
 +
*[[Jaewoo Choi 6.2_ECE302Fall2008sanghavi]]
  
 
== Problem 3: An Uncommon PDF ==
 
== Problem 3: An Uncommon PDF ==
 +
Let <math>Y</math> be a random variable with probability density function (PDF)
 +
 +
<math>
 +
f_Y(v) = \left\{\begin{array}{ll}
 +
1 + v,& -1\leq v\leq0,\\
 +
v,& 0<v\leq1,\\
 +
0,& \mbox{otherwise}.
 +
\end{array}\right.</math>
 +
 +
Find
 +
*(a) <math>P(|Y| < 1/2)</math>
 +
*(b) <math>P(Y > 0|Y < 1/2)</math>
 +
*(c) <math>E[Y]</math>.
 +
 +
*[[Anand Gautam 6.3_ECE302Fall2008sanghavi]]
 +
 +
*[[Nicholas Browdues 6.3_ECE302Fall2008sanghavi]]
 +
*[[Hamad AL Shehhi_ECE302Fall2008sanghavi]]
 +
 +
*[[Ken Pesyna_ECE302Fall2008sanghavi]]
 +
 +
*[[Kunal Kapoor 6.3_ECE302Fall2008sanghavi]]
 +
 +
*[[Monsu Mathew 6.3_ECE302Fall2008sanghavi]]
  
 
== Problem 4: Gaussian Coordinates ==
 
== Problem 4: Gaussian Coordinates ==
 +
A random point <math>(X,Y)</math> on a plane is chosen as follows: <math>X</math> and <math>Y</math> are chosen independently, with each one being a Gaussian random variable with zero mean and variance of 1. Let <math>D</math> be the square of the (random) distance of the point from the center.  Find the PDF of <math>D</math>. Is <math>D</math> one of the common random variables?
 +
 +
*[[Katie Pekkarinen 6.4_ECE302Fall2008sanghavi]]
 +
 +
*[[Divyanshu Kamboj 6.4_ECE302Fall2008sanghavi]]
 +
 +
*[[Umang Jhunjhunwala 6.4_ECE302Fall2008sanghavi]]
 +
 +
*[[Spencer Mitchell 6.4_ECE302Fall2008sanghavi]]
 +
 +
*[[Steven Streeter 6.4_ECE302Fall2008sanghavi]]
 +
----
 +
[[Main_Page_ECE302Fall2008sanghavi|Back to ECE302 Fall 2008 Prof. Sanghavi]]

Latest revision as of 11:57, 22 November 2011


Instructions

Homework 6 can be downloaded here on the ECE 302 course website.

Problem 1: Ceiling of an Exponential

$ X $ is an exponential random variable with paramter $ \lambda $. $ Y = \mathrm{ceil}(X) $, where the ceiling function $ \mathrm{ceil}(\cdot) $ rounds its argument up to the closest integer, i.e.:

        $ \mathrm{ceil}(a) $ = $ a $ if $ a $ is an integer
               = the smallest integer bigger than $ a $ if $ a $ is not an integer

What is the PMF of $ Y $? Is it one of the common random variables? (Hint: for all $ k $, find the quantity $ P(Y > k) $. Then find the PMF)

Problem 2: Fair Wages

``I do not have problems with anyone earning above average, as long as no one earns below average." - a quote (mistakenly attributed to) Max Weber. Can such a situation occur? Justify your answer.

Problem 3: An Uncommon PDF

Let $ Y $ be a random variable with probability density function (PDF)

$ f_Y(v) = \left\{\begin{array}{ll} 1 + v,& -1\leq v\leq0,\\ v,& 0<v\leq1,\\ 0,& \mbox{otherwise}. \end{array}\right. $

Find

  • (a) $ P(|Y| < 1/2) $
  • (b) $ P(Y > 0|Y < 1/2) $
  • (c) $ E[Y] $.

Problem 4: Gaussian Coordinates

A random point $ (X,Y) $ on a plane is chosen as follows: $ X $ and $ Y $ are chosen independently, with each one being a Gaussian random variable with zero mean and variance of 1. Let $ D $ be the square of the (random) distance of the point from the center. Find the PDF of $ D $. Is $ D $ one of the common random variables?


Back to ECE302 Fall 2008 Prof. Sanghavi

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn