m (New page: ===The CT LTI Signal=== <math>y(t) = 7x(t-4) \!</math> ===The Unit Impulse Response=== <math>y(t) = 7x(t-4) \!</math> <math>h(t) = 7\delta(t-4) \!</math>)
 
(HW 4.1 Response)
 
(4 intermediate revisions by the same user not shown)
Line 8: Line 8:
  
 
<math>h(t) = 7\delta(t-4) \!</math>
 
<math>h(t) = 7\delta(t-4) \!</math>
 +
 +
<math>H(s) = 7e^{-4s} \!</math>
 +
 +
===HW 4.1 Response===
 +
 +
HW 4.1 signal
 +
 +
<math>\frac{1}{2j}(e^{j4\pi t}-e^{-j4\pi t}) + \frac{1}{2}(e^{j3\pi t} + e^{-j3\pi t}) + e^{j2\pi t}</math>
 +
 +
The response is equal to the convolution of the input signal and the system.
 +
 +
<math>7e^{-4jt}\frac{1}{2j}(e^{j4\pi t}-e^{-j4\pi t}) + 7e^{-4jt}\frac{1}{2}(e^{j3\pi t} +e^{-j3\pi t}) + 7e^{-4jt}e^{j2\pi t}</math>

Latest revision as of 16:36, 26 September 2008

The CT LTI Signal

$ y(t) = 7x(t-4) \! $

The Unit Impulse Response

$ y(t) = 7x(t-4) \! $

$ h(t) = 7\delta(t-4) \! $

$ H(s) = 7e^{-4s} \! $

HW 4.1 Response

HW 4.1 signal

$ \frac{1}{2j}(e^{j4\pi t}-e^{-j4\pi t}) + \frac{1}{2}(e^{j3\pi t} + e^{-j3\pi t}) + e^{j2\pi t} $

The response is equal to the convolution of the input signal and the system.

$ 7e^{-4jt}\frac{1}{2j}(e^{j4\pi t}-e^{-j4\pi t}) + 7e^{-4jt}\frac{1}{2}(e^{j3\pi t} +e^{-j3\pi t}) + 7e^{-4jt}e^{j2\pi t} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison