(New page: == Fourier series coefficients for DT signal == =DT Signal= :<math>x[n]=sin(3 \pi n)\,</math> =Fourier series coefficients= To find N: :<math>N=\frac{2\pi}{3\pi} \times k </math> where k ...)
 
(Fourier series coefficients)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Fourier series coefficients for DT signal ==
+
= Fourier series coefficients for DT signal =
=DT Signal=
+
 
 +
==DT Signal==
 
:<math>x[n]=sin(3 \pi n)\,</math>
 
:<math>x[n]=sin(3 \pi n)\,</math>
  
=Fourier series coefficients=
+
==Fourier series coefficients==
 
To find N:
 
To find N:
 
:<math>N=\frac{2\pi}{3\pi} \times k </math> where k is the smallest integer that makes this be an integer.
 
:<math>N=\frac{2\pi}{3\pi} \times k </math> where k is the smallest integer that makes this be an integer.

Latest revision as of 16:14, 26 September 2008

Fourier series coefficients for DT signal

DT Signal

$ x[n]=sin(3 \pi n)\, $

Fourier series coefficients

To find N:

$ N=\frac{2\pi}{3\pi} \times k $ where k is the smallest integer that makes this be an integer.


$ \therefore k=3\ and\ N=2 $


$ \, x[0]= 1 $
$ \, x[1]=-1 $
$ \, x[2]=1 $
$ \, x[3]=-1 $

$ \, a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} \rightarrow a_k=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-jk\pi n} $

$ \, a_0=\frac{1+(-1)}{2}=0 $

$ \, a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-jk\pi n} $

$ \, a_1=\frac{1}{2}(x[0]e^{0}+x[1]e^{-j\pi})=\frac{1}{2}(1 \cdot 1+(-1)(-1)=1 $

$ \, \therefore \ a_o=0, a_1 =1 $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood