(New page: Suppose we have a LTI CT signal y(t)=2x(t) ==Unit Impulse Response h(t) and System Function H(s)== <math>y(t)=2x(t)=>h(t)=2\delta(t)</math> <math>H(j\omega)=\int_{-\infty}^\infty h(\tau)...)
 
(Response of the Signal and Fourier Series Coefficients)
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
==Unit Impulse Response h(t) and System Function H(s)==
 
==Unit Impulse Response h(t) and System Function H(s)==
<math>y(t)=2x(t)=>h(t)=2\delta(t)</math>
 
  
<math>H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
+
i)
 +
<math>y(t)=2x(t)=> h(t)=2\delta(t)</math>
 +
 
 +
ii)
 +
<math>H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
 +
 
 +
<math>=\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau</math>
 +
 
 +
<math>=\int_{-\infty}^\infty 2\delta(\tau)e^{-s\tau}d\tau</math>
 +
 
 +
<math>=2e^{-s*0}</math>
 +
 
 +
<math>=2</math>
 +
 
 +
==Response of the Signal and Fourier Series Coefficients==
 +
 
 +
<math>x(t)=3cos(3t)</math>
 +
 
 +
<math>=\frac{3}{2}[(e^{j3t})+(e^{-j3t})]</math>
 +
 
 +
<math>=\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t})</math>
 +
 
 +
since we have <math>e^{st}</math> has a response of <math>H(s)e^{st}</math>
 +
 
 +
so we can get
 +
 
 +
<math>y(t)=\frac{3}{2}[(e^{j3t})+(e^{-j3t})]H(s)</math>
 +
 
 +
<math>=\frac{3}{2}(e^{j3t})H(j3)+\frac{3}{2}(e^{-j3t})H(-3j)</math>
 +
 
 +
<math>=3e^{j3t}+3e^{-j3t} = 6cos(3t)</math>
 +
 
 +
 
 +
Coefficients:
 +
 
 +
we observe that the output is just double the input,
 +
so the coefficients should be doubleed,too
 +
 
 +
From Q1 we can get that when k=1, <math>a_1=3</math>, and when k=-1,<math>a_{-1}=3</math>
 +
 
 +
others are all zero

Latest revision as of 16:41, 26 September 2008

Suppose we have a LTI CT signal y(t)=2x(t)

Unit Impulse Response h(t) and System Function H(s)

i) $ y(t)=2x(t)=> h(t)=2\delta(t) $

ii) $ H(s)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ =\int_{-\infty}^\infty h(\tau)e^{-s\tau}d\tau $

$ =\int_{-\infty}^\infty 2\delta(\tau)e^{-s\tau}d\tau $

$ =2e^{-s*0} $

$ =2 $

Response of the Signal and Fourier Series Coefficients

$ x(t)=3cos(3t) $

$ =\frac{3}{2}[(e^{j3t})+(e^{-j3t})] $

$ =\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t}) $

since we have $ e^{st} $ has a response of $ H(s)e^{st} $

so we can get

$ y(t)=\frac{3}{2}[(e^{j3t})+(e^{-j3t})]H(s) $

$ =\frac{3}{2}(e^{j3t})H(j3)+\frac{3}{2}(e^{-j3t})H(-3j) $

$ =3e^{j3t}+3e^{-j3t} = 6cos(3t) $


Coefficients:

we observe that the output is just double the input, so the coefficients should be doubleed,too

From Q1 we can get that when k=1, $ a_1=3 $, and when k=-1,$ a_{-1}=3 $

others are all zero

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn