(New page: Given the system <math>y(t) = 5x(t-1)\,</math>, where <math>y(t)\,</math> is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the sys...)
 
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
Given the system <math>y(t) = 5x(t-1)\,</math>, where <math>y(t)\,</math> is the output and <math>x(t)\,</math> is the input, find the unit impulse response <math>h(t)\,</math> and the system function <math>H(s)\,</math>.<br>
+
Given the system <math>y(t) = 2x(t+3)\,</math>
Then find the response to <math>x(t) = 5cos(3\pi t) + sin(\pi t)\,</math>
+
 
 +
<math> x(t)= 2\delta(t+3) </math>
 +
 
 +
Then find the response to <math>x(t) = cos(4t) + sin(2t)\,</math>
 +
 
 +
<math>x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t}</math>
 +
 
 +
<math>H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau</math>
 +
 
 +
<math>H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau</math>
 +
 
 +
y(t) = x(t)*H(t)
 +
 
 +
<math>y(t) = (2e^{3j\omega})*(\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t})</math>

Latest revision as of 16:08, 26 September 2008

Given the system $ y(t) = 2x(t+3)\, $

$ x(t)= 2\delta(t+3) $

Then find the response to $ x(t) = cos(4t) + sin(2t)\, $

$ x(t)=\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t} $

$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ H(j\omega)=\int_{-\infty}^\infty (2\delta(\tau+3))e^{-j\omega\tau}d\tau $

y(t) = x(t)*H(t)

$ y(t) = (2e^{3j\omega})*(\frac{1}{2}e^{j4\pi t}+\frac{1}{2}e^{-j4\pi t}+\frac{1}{2j}e^{j2\pi t}+\frac{-1}{2j}e^{-j2\pi t}) $

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009