(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Periodic DT Signal ==
 
== Periodic DT Signal ==
----
 
  
 
<math>x[n]=-\frac{1}{2}cos(3\pi n)+sin(3\pi n)\!</math>.
 
<math>x[n]=-\frac{1}{2}cos(3\pi n)+sin(3\pi n)\!</math>.
Line 13: Line 12:
  
 
<math>x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n}</math>
 
<math>x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n}</math>
 +
 +
<math>a_{-1} = -\frac{1}{4}-j\frac{1}{2}</math>
 +
 +
<math>a_{0} = 0\!</math>
 +
 +
<math>a_{1} = -\frac{1}{4}+j\frac{1}{2}</math>

Latest revision as of 15:43, 26 September 2008

Periodic DT Signal

$ x[n]=-\frac{1}{2}cos(3\pi n)+sin(3\pi n)\! $.


Fourier Series Coefficients

$ x[n]=-\frac{1}{2}[\frac{e^{j3\pi n}+e^{-j3\pi n}}{2}]+\frac{e^{j3\pi n}-e^{-3\pi n}}{j2} $


$ x[n]=-\frac{1}{4}e^{j3\pi n}-\frac{1}{4}e^{-j3\pi n}+\frac{1}{j2}e^{3\pi n}-\frac{1}{j2}e^{-j3\pi n} $

$ a_{-1} = -\frac{1}{4}-j\frac{1}{2} $

$ a_{0} = 0\! $

$ a_{1} = -\frac{1}{4}+j\frac{1}{2} $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison