(6 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
2.  <math>\sum_{k = 0}^{3}x[n] = (2 + j)</math>
 
2.  <math>\sum_{k = 0}^{3}x[n] = (2 + j)</math>
  
3.  for the given value of k, <math>e^{jk2\pi} = 1\,</math>, then that <math>a_{k} = \frac{1}{2}\,</math>  
+
3.  <math>a_{1} = a{2}\,</math>
 +
 
 +
4.  for the given value of k, <math>e^{jk\frac{2\pi}{N}} = -1\,</math>, then that <math>a_{k} = \frac{1}{2}\,</math>
 +
 
 +
5.  All other <math>a_{k} = 0\,</math>  
  
  
Line 12: Line 16:
  
 
<math>a_{0} = \frac{2 + j}{4}</math>
 
<math>a_{0} = \frac{2 + j}{4}</math>
 +
 +
<math>a_{1} = \frac{1}{2}</math>
 +
 +
<math>a_{2} = \frac{1}{2}</math>
 +
 +
<math>a_{3} = 0</math>
 +
 +
<math>x[n] = \frac{2 + j}{4} + \frac{1}{2}e^{j\frac{\pi}{2}n} + \frac{1}{2}e^{j\pi n}</math>

Latest revision as of 15:33, 26 September 2008

DT Signal:

1. Signal is periodic with N = 4

2. $ \sum_{k = 0}^{3}x[n] = (2 + j) $

3. $ a_{1} = a{2}\, $

4. for the given value of k, $ e^{jk\frac{2\pi}{N}} = -1\, $, then that $ a_{k} = \frac{1}{2}\, $

5. All other $ a_{k} = 0\, $


Solution

$ a_{0} = \frac{2 + j}{4} $

$ a_{1} = \frac{1}{2} $

$ a_{2} = \frac{1}{2} $

$ a_{3} = 0 $

$ x[n] = \frac{2 + j}{4} + \frac{1}{2}e^{j\frac{\pi}{2}n} + \frac{1}{2}e^{j\pi n} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva