(New page: ==CT LTI system== My CT LTI system is (drum roll please)... <math>y(t)=5x(t - 2) - 3x(t)\!</math> ==Unit Impulse Response== Well, this is rather straightforward. You want the respo...)
 
(System function)
 
(One intermediate revision by the same user not shown)
Line 39: Line 39:
  
 
Using what is known as the sifting property, we obtain the following result:
 
Using what is known as the sifting property, we obtain the following result:
 +
  
 
<math>H(s) = 5e^{-2s} - 3\!</math>
 
<math>H(s) = 5e^{-2s} - 3\!</math>
 +
 +
 +
==System Response==
 +
 +
In this last part, you just take my signal from part (a):
 +
 +
 +
<math>x(t) = 2e^{j2t} + 2e^{-j2t} + \frac{3}{2}e^{j3t} - \frac{3}{2}e^{-j3t}</math>
 +
 +
 +
Then multiply that by the <math>H(s)\!</math>
 +
 +
 +
<math>y(t) = [H(jw)][x(t)]\!</math>
 +
 +
 +
<math>y(t) = (5e^{-2s} - 3)*[2e^{j2t} + 2e^{-j2t} + \frac{3}{2}e^{j3t} - \frac{3}{2}e^{-j3t}]</math>
 +
 +
 +
<math>y(t) = 10e^{j2t - 2s} - 6e^{j2t} + 10e^{-j2t - 2s} - 6e^{-j2t} + \frac{15}{2}e^{j3t - 2s} - \frac{9}{2}e^{j3t} - \frac{15}{2}e^{-j3t - 2s} + \frac{9}{2}e^{-j3t}</math>

Latest revision as of 15:10, 26 September 2008

CT LTI system

My CT LTI system is (drum roll please)...


$ y(t)=5x(t - 2) - 3x(t)\! $


Unit Impulse Response

Well, this is rather straightforward. You want the response to the unit impulse, do ya? Well, if that is what you want, that is what you will get. All you have to do is replace the $ x(t)\! $ with $ \delta(t)\! $, also known as the notorious delta function.


$ h(t) = 5\delta(t - 2) - 3\delta(t)\! $


System function

So, you want the system function? Easy. It is a simple application of something we covered way back in ECE 201, laplace transform. I personally call it DeCarlo transform, but that is another story entirely. Anyways, the following formula gets you the system function!


$ H(s) = \int_{-\infty}^{+\infty} h(t)e^{st}dt $


Note that $ s=j\omega\! $.


Here goes the math:


$ H(s) = \int_{-\infty}^{+\infty}[5\delta(t - 2) - 3\delta(t)]e^{-st}dt\! $


$ H(s) = \int_{-\infty}^{+\infty}5\delta(t - 2)e^{-st}dt - \int_{-\infty}^{+\infty}3\delta(t)e^{-st}dt $


Using what is known as the sifting property, we obtain the following result:


$ H(s) = 5e^{-2s} - 3\! $


System Response

In this last part, you just take my signal from part (a):


$ x(t) = 2e^{j2t} + 2e^{-j2t} + \frac{3}{2}e^{j3t} - \frac{3}{2}e^{-j3t} $


Then multiply that by the $ H(s)\! $


$ y(t) = [H(jw)][x(t)]\! $


$ y(t) = (5e^{-2s} - 3)*[2e^{j2t} + 2e^{-j2t} + \frac{3}{2}e^{j3t} - \frac{3}{2}e^{-j3t}] $


$ y(t) = 10e^{j2t - 2s} - 6e^{j2t} + 10e^{-j2t - 2s} - 6e^{-j2t} + \frac{15}{2}e^{j3t - 2s} - \frac{9}{2}e^{j3t} - \frac{15}{2}e^{-j3t - 2s} + \frac{9}{2}e^{-j3t} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett