(Definition)
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Definition==
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
 +
==Definition of Periodic CT Signal==
  
 
x(t) is periodic if there existes T>0 such that x(t)=x(T+t)
 
x(t) is periodic if there existes T>0 such that x(t)=x(T+t)
  
 
==Example==
 
==Example==
<math>x(t)=3*cos(t)</math>
+
 
 +
Let's look at: <math>x(t)=3*cos(3t)</math>, we know that the fudamental period of x(t) is
 +
 
 +
<math>w_0=2\pi/T=3</math>
 +
 
 +
<math>x(t)=3cos(3t)</math>
 +
 
 +
<math>=\frac{3}{2}[(e^{j3t})+(e^{-j3t})]</math>
 +
 
 +
<math>=\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t})</math>
 +
 
 +
so we can see that when k=1, <math>a_1=\frac{3}{2}</math>, and when k=-1,<math>a_{-1}=\frac{3}{2}</math>
 +
 
 +
others are all zero
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:53, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Definition of Periodic CT Signal

x(t) is periodic if there existes T>0 such that x(t)=x(T+t)

Example

Let's look at: $ x(t)=3*cos(3t) $, we know that the fudamental period of x(t) is

$ w_0=2\pi/T=3 $

$ x(t)=3cos(3t) $

$ =\frac{3}{2}[(e^{j3t})+(e^{-j3t})] $

$ =\frac{3}{2}(e^{j3t})+\frac{3}{2}(e^{-j3t}) $

so we can see that when k=1, $ a_1=\frac{3}{2} $, and when k=-1,$ a_{-1}=\frac{3}{2} $

others are all zero


Back to Practice Problems on Signals and Systems

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009