(→Computing the Impulse Response and System Function) |
(→Computing the Impulse Response and System Function) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
The System Function is defined by: | The System Function is defined by: | ||
+ | |||
+ | <math>H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\,</math> | ||
+ | |||
+ | Now computing the actual response: | ||
+ | |||
+ | <math>H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\,</math> | ||
+ | |||
+ | which turns into: | ||
+ | |||
+ | |||
+ | <math>H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\,</math> | ||
+ | |||
+ | Now using the sifting property of the delta function we obtain: | ||
+ | |||
+ | <math>\ H(s)= 0.5 e^{-5s} </math> | ||
+ | |||
+ | Remember<math>\ s= jw </math> | ||
+ | |||
+ | ==Computing the Response of the Signal from Q1 using H(s)== | ||
+ | |||
+ | When a periodic signal represented as a linear combination of complex exponential is inputted into a LTI system the output is | ||
+ | |||
+ | <math>\ \Sigma a_{k} e^{jkwt} \longrightarrow sys \longrightarrow \Sigma H(jkw) a_{k} e^{jkwt} </math> | ||
+ | |||
+ | Therefore using this fact the system's output to the input of <math>\ cos(2 \pi t/3) sin(2 \pi t/9) </math> is | ||
+ | |||
+ | <math>\ y(t)= \frac{j}{8} e^{-10 \frac{2 \pi}{9}} e^{2 \frac{2 \pi}{9}t} -\frac{j}{8} e^{10 \frac{2 \pi}{9}}e^{-2 \frac{2 \pi}{9}t} - \frac{j}{8} e^{-20 \frac{2 \pi}{9} e^{4 \frac{2 \pi}{9}t}} + \frac{j}{8} e^{20 \frac{2 \pi}{9} e^{-4 \frac{2 \pi}{9}t}}</math> |
Latest revision as of 16:50, 26 September 2008
Defining an LTI System
For an input x(t), let the LTI system be defined as:
$ \ y(t)=0.5 x(t-5) u(t) $
Computing the Impulse Response and System Function
Inputting a delta into the system yields:
$ \ y(t)=h(t)=0.5 \delta(t-5) u(t) $
The System Function is defined by:
$ H(s)=\int_{-\infty}^{\infty} h(t)e^{-st}\,dt\, $
Now computing the actual response:
$ H(s)=\int_{-\infty}^{\infty} 0.5 \delta(t-5) u(t) e^{-st}\,dt\, $
which turns into:
$ H(s)=\int_{0}^{\infty} 0.5 \delta(t-5) e^{-st}\,dt\, $
Now using the sifting property of the delta function we obtain:
$ \ H(s)= 0.5 e^{-5s} $
Remember$ \ s= jw $
Computing the Response of the Signal from Q1 using H(s)
When a periodic signal represented as a linear combination of complex exponential is inputted into a LTI system the output is
$ \ \Sigma a_{k} e^{jkwt} \longrightarrow sys \longrightarrow \Sigma H(jkw) a_{k} e^{jkwt} $
Therefore using this fact the system's output to the input of $ \ cos(2 \pi t/3) sin(2 \pi t/9) $ is
$ \ y(t)= \frac{j}{8} e^{-10 \frac{2 \pi}{9}} e^{2 \frac{2 \pi}{9}t} -\frac{j}{8} e^{10 \frac{2 \pi}{9}}e^{-2 \frac{2 \pi}{9}t} - \frac{j}{8} e^{-20 \frac{2 \pi}{9} e^{4 \frac{2 \pi}{9}t}} + \frac{j}{8} e^{20 \frac{2 \pi}{9} e^{-4 \frac{2 \pi}{9}t}} $