(b) Computing the response to the system when x[n] is the input from Question 2)
 
(21 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
<math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math>
 
<math>x[n] \rightarrow system \rightarrow y[n] = 5x[n]</math>
  
==a) Finding the unit impulse response h[n] and the system function H(z).==
+
==a) Finding the unit impulse response h[n] and the system function F(z).==
  
 
<math>x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n]</math>
 
<math>x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n]</math>
  
Therefore the unit impulse response, <math>h[n] = 5\delta [n]</math>
+
Therefore the unit impulse response, <big><math>h[n] = 5\delta [n]</math></big>
 +
 
 +
For a DT LTI system,
 +
 
 +
<math>Z^n \rightarrow system \rightarrow F(z)Z^n</math>
 +
 
 +
Output of the system, <math>F(z)Z^n = h[n]*Z^n = \sum_{m = -\infty}^{\infty} h[m]Z^{n-m} = Z^n\sum_{m = -\infty}^{\infty}h[m]Z^{-m}</math>
 +
 
 +
Therefore, <math>F(z) = \sum_{m = -\infty}^{\infty}h[m]Z^{-m} = \sum_{m = -\infty}^{\infty}5\delta [m] Z^{-m}</math>
 +
 
 +
==b) Computing the response to the system when x[n] is the input from Question 2==
 +
 
 +
<font size = '4'><math>x[n] = cos(5\pi n) = e^{j\pi n}</math></font>
 +
 
 +
Therefore, <font size = '4'><math>Z^n = e^{j\pi n}</math></font>
 +
 
 +
<font size = '4'><math>Z = e^{j\pi}</math></font>
 +
 
 +
<math>F(e^{j\pi}) = \sum_{m = -\infty}^{\infty}5\delta [m] (e^{j\pi})^{-m} </math>
 +
 
 +
delta[m] is 0 for all values of m except at delta[0] (m = 0) where it is 1.
 +
 
 +
Therefore: <font size = '4'><math>F(e^{j\pi}) = 5</math></font>
 +
 
 +
Express <font size = '4'><math>x[n] = cos(5\pi n)</math></font> as <math>x[n] = \sum_{k = -\infty}^{\infty} a_k e^{jk\pi n} </math>
 +
 
 +
The response, <font size = '4'><math>y[n] = \sum_{k = -\infty}^{\infty} a_k F(e^{jk\pi}) e^{jk\pi n} = 5\sum_{k = -\infty}^{\infty} a_k e^{jk\pi n} </math>

Latest revision as of 14:59, 26 September 2008

Defining the DT LTI system

$ x[n] \rightarrow system \rightarrow y[n] = 5x[n] $

a) Finding the unit impulse response h[n] and the system function F(z).

$ x[n] = \delta [n] \rightarrow system \rightarrow y[n]=5\delta [n] $

Therefore the unit impulse response, $ h[n] = 5\delta [n] $

For a DT LTI system,

$ Z^n \rightarrow system \rightarrow F(z)Z^n $

Output of the system, $ F(z)Z^n = h[n]*Z^n = \sum_{m = -\infty}^{\infty} h[m]Z^{n-m} = Z^n\sum_{m = -\infty}^{\infty}h[m]Z^{-m} $

Therefore, $ F(z) = \sum_{m = -\infty}^{\infty}h[m]Z^{-m} = \sum_{m = -\infty}^{\infty}5\delta [m] Z^{-m} $

b) Computing the response to the system when x[n] is the input from Question 2

$ x[n] = cos(5\pi n) = e^{j\pi n} $

Therefore, $ Z^n = e^{j\pi n} $

$ Z = e^{j\pi} $

$ F(e^{j\pi}) = \sum_{m = -\infty}^{\infty}5\delta [m] (e^{j\pi})^{-m} $

delta[m] is 0 for all values of m except at delta[0] (m = 0) where it is 1.

Therefore: $ F(e^{j\pi}) = 5 $

Express $ x[n] = cos(5\pi n) $ as $ x[n] = \sum_{k = -\infty}^{\infty} a_k e^{jk\pi n} $

The response, $ y[n] = \sum_{k = -\infty}^{\infty} a_k F(e^{jk\pi}) e^{jk\pi n} = 5\sum_{k = -\infty}^{\infty} a_k e^{jk\pi n} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang