(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | == Part A == | ||
+ | |||
+ | |||
assume that | assume that | ||
Line 18: | Line 21: | ||
<math>F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw}</math> | <math>F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw}</math> | ||
+ | |||
+ | therefore, | ||
+ | |||
+ | <math>F(z) = e^{10jw}</math> |
Latest revision as of 13:07, 26 September 2008
Part A
assume that
$ y[n] = x[n-10] $
unit impulse response
$ h[n] = \delta[n] $
$ y[n] = h[n] $
then we can can a unit impulse response as
$ h[n]= \delta[n-10] $
for the frequency response,
$ F(z) = \sum_{m=-\infty}^{\infty} h[m]e^{jmw} $
$ F(z) = \sum_{m=-\infty}^\infty \delta[m-10]e^{jmw} $
therefore,
$ F(z) = e^{10jw} $