(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
Suppose '''E(1,λ) and E(1,μ)''' are independent, then;
 
Suppose '''E(1,λ) and E(1,μ)''' are independent, then;
  
P[min{ E(1,λ) , E(1,μ) } > t] = P[E(1,λ) > t] . P[E(1,μ) } > t]
+
P [min{ E(1,λ) , E(1,μ) } > t] = P [E(1,λ) > t] . P [E(1,μ) } > t]
 +
 
 
        = exp (-λt) . exp (-μt)
 
        = exp (-λt) . exp (-μt)
 +
 
        = exp {-(λ + μ)t}
 
        = exp {-(λ + μ)t}
  
which shows that minimum of E1,λ and E1,μ is exponentially distributed.
+
which shows that minimum of E(1) and E(1) is exponentially distributed.
  
 
So,
 
So,
Line 15: Line 17:
 
Here, if we put λ = 1, then;
 
Here, if we put λ = 1, then;
  
'''E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }''''''
+
'''E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }'''

Latest revision as of 17:50, 6 October 2008

From the memoryless property of Exponential Distribution function:

Suppose E(1,λ) and E(1,μ) are independent, then;

P [min{ E(1,λ) , E(1,μ) } > t] = P [E(1,λ) > t] . P [E(1,μ) } > t]

= exp (-λt) . exp (-μt)

= exp {-(λ + μ)t}

which shows that minimum of E(1,λ) and E(1,μ) is exponentially distributed.

So,

E(1, λ1+ λ2+ λ3+……. λn) = min { E(1,λ1), E(1,λ2), E(1,λ3), ……….., E(1,λn) }

Here, if we put λ = 1, then;

E(1, 1+ 2+ 3+……. n) = min { E(1,1), E(1,2), E(1,3), ……….., E(1,n) }

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn