(Impulse Response)
(CT Input)
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
y(d(t))=7(d(t))
 
y(d(t))=7(d(t))
 
<br>
 
<br>
so the impulse response is 3d(t)
+
so the impulse response is 7d(t)
 +
==System function==
 +
H(s) = <math> \int_{-\infty}^{\infty}7\delta(\tau)e^{-s\tau}d\tau</math>
 +
<br>
 +
<math>H(s)=7</math>
 +
==CT Input==
 +
<math>x(t)=cos(3*pi*t)cos(6*pi*t)\!</math>
 +
 
 +
a2=6
 +
a3=6
 +
a9=6
 +
a10=6
 +
 
 +
<br>
 +
fundamental period = <math>2\pi/6</math>
 +
 
 +
==Response to Input==
 +
 
 +
<math>y(t)=42e^{2jt} + 42e^{3jt}+ 42e^{9jt}+ 42e^{10jt}</math>

Latest revision as of 09:24, 26 September 2008

System

y(t)=7x(t)

Impulse Response

y(d(t))=7(d(t))
so the impulse response is 7d(t)

System function

H(s) = $ \int_{-\infty}^{\infty}7\delta(\tau)e^{-s\tau}d\tau $
$ H(s)=7 $

CT Input

$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $

a2=6 a3=6 a9=6 a10=6


fundamental period = $ 2\pi/6 $

Response to Input

$ y(t)=42e^{2jt} + 42e^{3jt}+ 42e^{9jt}+ 42e^{10jt} $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett