(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
=Informations=
+
==Informations==
  
 
1. <math>N = 2\,</math>
 
1. <math>N = 2\,</math>
  
2.
+
2. <math>a_k = 0\,</math> for all |k|>1
  
3. <math>\sum_{n=0}^{3}x[n]=3</math>
+
3. <math>\sum_{n=0}^{3}x[n]=2</math>
  
 
4. <math>\sum_{n=0}^{3}(-1)^nx[n]=5</math>
 
4. <math>\sum_{n=0}^{3}(-1)^nx[n]=5</math>
 +
 +
==Inspections==
 +
 +
From the first information, we can directly subtitute N into:
 +
 +
<math>x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\,</math>
 +
 +
<math>x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\,</math>
 +
 +
From the third information, we can find <math>a_0\,</math>:
 +
 +
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} 2 = \frac{1}{2}</math>
 +
 +
From the fourth information, we can find <math>a_1\,</math>:
 +
 +
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n]\,</math>
 +
 +
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]e^{-jn\pi}\,</math>
 +
 +
<math>a_0=\frac{5}{4}</math>
 +
 +
Which says that the function is:
 +
 +
 +
<math>x[n]=\frac{1}{2}+\frac{5}{4}e^{jn\pi}\,</math>

Latest revision as of 10:06, 26 September 2008

Informations

1. $ N = 2\, $

2. $ a_k = 0\, $ for all |k|>1

3. $ \sum_{n=0}^{3}x[n]=2 $

4. $ \sum_{n=0}^{3}(-1)^nx[n]=5 $

Inspections

From the first information, we can directly subtitute N into:

$ x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\, $

$ x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\, $

From the third information, we can find $ a_0\, $:

$ a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} 2 = \frac{1}{2} $

From the fourth information, we can find $ a_1\, $:

$ a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n]\, $

$ a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]e^{-jn\pi}\, $

$ a_0=\frac{5}{4} $

Which says that the function is:


$ x[n]=\frac{1}{2}+\frac{5}{4}e^{jn\pi}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang