(New page: Let us take the periodic, CT signal: <math>3cos(4\pi t) + e^{j\frac{2\pi}{5}t}</math> ---- As we know, the Fourier Series for a CT signal is written as: <math>x(t) = \sum^{\infty}_{k = ...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 
Let us take the periodic, CT signal: <math>3cos(4\pi t) + e^{j\frac{2\pi}{5}t}</math>
 
Let us take the periodic, CT signal: <math>3cos(4\pi t) + e^{j\frac{2\pi}{5}t}</math>
  
Line 15: Line 24:
  
 
<math>x(t) = \frac{3}{2}(e^{j 4 \pi t} + e^{-j 4 \pi t}) + e^{j \frac{2 \pi}{5} t}</math>
 
<math>x(t) = \frac{3}{2}(e^{j 4 \pi t} + e^{-j 4 \pi t}) + e^{j \frac{2 \pi}{5} t}</math>
 +
 +
Solving for a:
 +
 +
<math> a_1 = \frac{3}{2} </math>
 +
 +
<math> a_{-1} = \frac{3}{2} </math>
 +
 +
<math> a_2 = a_{-2} = 1 </math>
 +
 +
<math> a_k = 0</math> else
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:06, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Let us take the periodic, CT signal: $ 3cos(4\pi t) + e^{j\frac{2\pi}{5}t} $


As we know, the Fourier Series for a CT signal is written as:

$ x(t) = \sum^{\infty}_{k = -\infty}a_k e^{j k w_o t} $

Where $ a_k $ is: $ a_k = \frac{1}{T} \int^{T}_{0} x(t) e^{-j k w_o t} $


Our signal, x(t), can also be written as:

$ x(t) = \frac{3}{2}(e^{j 4 \pi t} + e^{-j 4 \pi t}) + e^{j \frac{2 \pi}{5} t} $

Solving for a:

$ a_1 = \frac{3}{2} $

$ a_{-1} = \frac{3}{2} $

$ a_2 = a_{-2} = 1 $

$ a_k = 0 $ else


Back to Practice Problems on Signals and Systems

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn