(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 
== Equations ==
 
== Equations ==
  
Line 13: Line 22:
 
==Input Signal==
 
==Input Signal==
  
<math>x(t)=(1+j)cos(3t)+14sin(6t)\!</math>
+
<math>x(t)=cos(3*pi*t)cos(6*pi*t)\!</math>
==Ao==
+
<br>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{0}dt</math>
+
<br>
==A1==
+
<math>x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}]</math>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{1}dt</math>
+
<br>
==A2==
+
<math>     =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit}</math>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{2}dt</math>
+
<br>
==A-1==
+
<br>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-1}dt</math>
+
The fundamental frequency is 2*pi
==A-2==
+
<br>
<math>Ao =\int_0^{2\pi}[(1+j)cos(4t) + 14sin(6t)]e^{-2}dt</math>
+
a3=1/4
 +
a-1=1/4
 +
a1=1/4
 +
a3=1/4
 +
all other ak=0
 +
 
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:02, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Equations

Fourier series of x(t):
$ x(t)=\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t} $

Signal Coefficients:
$ a_k=\frac{1}{T}\int_0^Tx(t)e^{-jk\omega_0t}dt $

From Phil Cannon

Input Signal

$ x(t)=cos(3*pi*t)cos(6*pi*t)\! $

$ x(t)=[1/2*e^{j*2*pi*t}+1/2*e^{-j*2*pi*t}]*[1/2*e^{j*4*pi*t}+1/2*e^{-j*4*pi*t}] $
$ =1/4*e^{j6pit}+1/4*e^{-j2pit}+1/4*e^{j2pit}+1/4*e^{-j6pit} $

The fundamental frequency is 2*pi
a3=1/4 a-1=1/4 a1=1/4 a3=1/4 all other ak=0


Back to Practice Problems on Signals and Systems

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics