(2 intermediate revisions by the same user not shown)
Line 8: Line 8:
  
  
<math>fx(X)=2*\sqrt{R^2-D^2}  if 0<D<R </math>
+
<math>X=2*\sqrt{R^2-D^2}</math> if <math> 0<D<R \,\ </math>
  
<math>fx(X)=2*R if D=0</math>
+
<math>X=2*R \,\ </math> if <math>D=0 \,\ </math>
  
<math>fx(X)=0 else</math>
+
<math>X=0 \,\ </math>
 +
else
 +
 
 +
so its PDF will be
 +
<math>\int_0^{2*R} \sqrt{R^2-D^2} dD</math>

Latest revision as of 09:43, 7 October 2008

Weee ECE302Fall2008sanghavi.jpg

Blue line => $ L/2 = \sqrt{R^2-D^2} $

Length $ = 2*(L/2)=2*\sqrt{R^2-D^2} $

let X be the length of chord


$ X=2*\sqrt{R^2-D^2} $ if $ 0<D<R \,\ $

$ X=2*R \,\ $ if $ D=0 \,\ $

$ X=0 \,\ $ else

so its PDF will be $ \int_0^{2*R} \sqrt{R^2-D^2} dD $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett