(New page: == Signal == Compute the Fourier series coefficients of the following signal: <font size=4><math>x(t) = 3cos(7t) + 11sin(4t)</math></font> == Fourier series == <font size=4><math>x(...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 
== Signal ==
 
== Signal ==
  
 
Compute the Fourier series coefficients of the following signal:
 
Compute the Fourier series coefficients of the following signal:
 
+
<math>x(t) = 3cos(7t) + 11sin(4t)\!</math>
<font size=4><math>x(t) = 3cos(7t) + 11sin(4t)</math></font>  
+
  
  
 
== Fourier series ==
 
== Fourier series ==
  
 
+
<math>x(t) = 3cos(7t) + 11sin(4t)\!</math>
<font size=4><math>x(t) = 3cos(7t) + 11sin(4t)</math></font>  
+
  
 
<math>x(t) = 3\frac{e^{i7t}+ e^{-i7t}}{2} + 11\frac{e^{i4t}- e^{-i4t}}{2i}</math>
 
<math>x(t) = 3\frac{e^{i7t}+ e^{-i7t}}{2} + 11\frac{e^{i4t}- e^{-i4t}}{2i}</math>
Line 17: Line 24:
  
 
== Coefficients ==
 
== Coefficients ==
 
+
<math>w_0=1\!</math>
<font size=4><math>w_0=1</math></font>
+
  
 
<math>a_4= \frac{11}{2i}</math>
 
<math>a_4= \frac{11}{2i}</math>
Line 26: Line 32:
 
<math>a_7=a_{-7}= \frac{3}{2}</math>
 
<math>a_7=a_{-7}= \frac{3}{2}</math>
  
<font size=4><math>a_k = 0</math> </font> for all other<math>k \in \mathbb{Z}</math>
+
<math>a_k = 0\!</math> for all other <math>k \in \mathbb{Z}</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 10:04, 16 September 2013


Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Signal

Compute the Fourier series coefficients of the following signal: $ x(t) = 3cos(7t) + 11sin(4t)\! $


Fourier series

$ x(t) = 3cos(7t) + 11sin(4t)\! $

$ x(t) = 3\frac{e^{i7t}+ e^{-i7t}}{2} + 11\frac{e^{i4t}- e^{-i4t}}{2i} $

$ x(t) = \frac{3}{2}e^{i7t}+ \frac{3}{2}e^{-i7t} + \frac{11}{2i}e^{i4t}- \frac{11}{2i}e^{-i4t} $


Coefficients

$ w_0=1\! $

$ a_4= \frac{11}{2i} $

$ a_{-4}= -\frac{11}{2i} $

$ a_7=a_{-7}= \frac{3}{2} $

$ a_k = 0\! $ for all other $ k \in \mathbb{Z} $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood