(New page: == Information of x(t) == <math> N = 4 </math> <math> a_5 = 10 </math> x(t) is a real and even signal. <math> \frac{1}{4}\sum^{3}_{0} |x[n]|^2 = 200\,</math> == Finding x(t) by usin...)
 
(Finding x(t) by using given information)
 
(6 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
== Finding x(t) by using given information ==
 
== Finding x(t) by using given information ==
  
<math> a_1 = a_5 = 10</math>
+
<math> a_1 = a_5 = 10\,</math>
  
<math> x(t) is a even siganl, so a_-1 = 10</math>
+
x(t) is a even siganl,so <math>  a_{-1} = 10\,</math>
  
<math> Using parseval's relation, </math>
+
Using parseval's relation
  
<math> \sum^{2}_{-1} |a_k|^2 = 200 </math>
+
<math> \sum^{2}_{-1} |a_k|^2 = 200 \,</math>
  
<math> |a_-1|^2 + |a_1|^2 + |a_0|^2 + |a_2|^2 = 200 </math>
+
<math> |a_{-1}|^2 + |a_1|^2 + |a_0|^2 + |a_2|^2 = 200 \,</math>
  
Then <math> a_0 = a_2 = 0. </math>
+
Then <math> a_0 = a_2 = 0. \,</math>
  
<math> x[n] = \sum^{2}_{-1} a_k e^{j\frac{2\pi}{4}kn}</math>
+
<math> x[n] = \sum^{2}_{-1} a_k e^{j\frac{2\pi}{4}kn}\,</math>
 +
 
 +
<math> x[n] = 10e^{j\frac{2\pi}{4}n} + 10e^{-j\frac{2\pi}{4}n}\,</math>
 +
 
 +
<math> x[n] = 10e^{j\frac{\pi}{2}n} + 10e^{-j\frac{\pi}{2}n}\,</math>

Latest revision as of 18:13, 25 September 2008

Information of x(t)

$ N = 4 $

$ a_5 = 10 $

x(t) is a real and even signal.

$ \frac{1}{4}\sum^{3}_{0} |x[n]|^2 = 200\, $


Finding x(t) by using given information

$ a_1 = a_5 = 10\, $

x(t) is a even siganl,so $ a_{-1} = 10\, $

Using parseval's relation

$ \sum^{2}_{-1} |a_k|^2 = 200 \, $

$ |a_{-1}|^2 + |a_1|^2 + |a_0|^2 + |a_2|^2 = 200 \, $

Then $ a_0 = a_2 = 0. \, $

$ x[n] = \sum^{2}_{-1} a_k e^{j\frac{2\pi}{4}kn}\, $

$ x[n] = 10e^{j\frac{2\pi}{4}n} + 10e^{-j\frac{2\pi}{4}n}\, $

$ x[n] = 10e^{j\frac{\pi}{2}n} + 10e^{-j\frac{\pi}{2}n}\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn