Line 25: Line 25:
 
<math>H(j\omega)=\int_{-\infty}^\infty (35\delta(\tau) - 2\delta(\tau+5))e^{-j\omega\tau}d\tau</math>
 
<math>H(j\omega)=\int_{-\infty}^\infty (35\delta(\tau) - 2\delta(\tau+5))e^{-j\omega\tau}d\tau</math>
  
Using the sifting property we see that we get <math>35e^{0}-2e^{5 j\omega}</math>
+
Using the sifting property we see that we get  
 +
 
 +
<math>35e^{0}-2e^{5 j\omega} = 35 - 2e^{5j\omega}</math>
 +
 
 +
So since y(t) = x(t)*H(t), we can now solve for y(t):
 +
 
 +
<math>y(t) = (35 -2e^{5j\omega})*(\frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2})</math>

Latest revision as of 17:48, 25 September 2008

CT LTI Impulse Response

The system $ y(t) = 35x(t) - 2x(t+5) $ is LTI

Let's compute h(t):

$ x(t) = \delta(t) $

$ h(t) = 35\delta(t) - 2\delta(t+5) $

Response to My Function From Part 1

The function I chose for part 1 was

$ x(t) = sin(14t)+(1+3j)cos(2t) = \frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2} $

So lets compute the system's response.

Since the equation is already expressed as a sum of complex exponentials, we need only multiply the input signal by H(t).

Let's calculate it:

$ H(j\omega)=\int_{-\infty}^\infty h(\tau)e^{-j\omega\tau}d\tau $

$ H(j\omega)=\int_{-\infty}^\infty (35\delta(\tau) - 2\delta(\tau+5))e^{-j\omega\tau}d\tau $

Using the sifting property we see that we get

$ 35e^{0}-2e^{5 j\omega} = 35 - 2e^{5j\omega} $

So since y(t) = x(t)*H(t), we can now solve for y(t):

$ y(t) = (35 -2e^{5j\omega})*(\frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2}) $

Alumni Liaison

EISL lab graduate

Mu Qiao