(New page: == CT Fourier Series == Input is <math>(1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t)</math>)
 
(CT Fourier Series)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== CT Fourier Series ==
 
== CT Fourier Series ==
  
Input is <math>(1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t)</math>
+
If input is <math>(1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t)</math>
 +
 
 +
 
 +
<math>= (1 + j)(\frac {e^{j \frac{\pi}{2}t + \pi j} + e^{-j \frac{\pi}{2}t - \pi j}}{2})(\frac{e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}}{2j})</math>
 +
 
 +
<math>= \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}e^{\pi j} + e^{-j \frac{\pi}{2}t}e^{ \pi j})(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t})</math>
 +
 
 +
<math>= \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}(1) + e^{-j \frac{\pi}{2}t}(-1))(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t})</math>
 +
 
 +
<math>= \frac{1 + j}{4j}(e^{j \frac{3 \pi}{4}t} - e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t} + e^{-j \frac{3 \pi}{4}t})</math>

Latest revision as of 08:55, 26 September 2008

CT Fourier Series

If input is $ (1 + j)cos(\frac{\pi}{2}t + \pi)sin(\frac{\pi}{4}t) $


$ = (1 + j)(\frac {e^{j \frac{\pi}{2}t + \pi j} + e^{-j \frac{\pi}{2}t - \pi j}}{2})(\frac{e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}}{2j}) $

$ = \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}e^{\pi j} + e^{-j \frac{\pi}{2}t}e^{ \pi j})(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}) $

$ = \frac{1 + j}{4j}(e^{j \frac{\pi}{2}t}(1) + e^{-j \frac{\pi}{2}t}(-1))(e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t}) $

$ = \frac{1 + j}{4j}(e^{j \frac{3 \pi}{4}t} - e^{j \frac{\pi}{4}t} - e^{-j \frac{\pi}{4}t} + e^{-j \frac{3 \pi}{4}t}) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett