(New page: ==Periodic CT Signal== The first signal that comes to mind when i think of a periodic CT signal is one involving sines and cosines, so let's work with one of those. Let <math>x(t) = sin(...)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
==Periodic CT Signal==
 
==Periodic CT Signal==
  
Line 7: Line 16:
 
This can also be expressed as
 
This can also be expressed as
  
<math>x(t) = e^{14jt}/(2j)-e^{-14jt}/(2j) + (1+3j)*e^{2jt}/2 + (1+3j)e^{-2jt}/2</math>
+
<math>x(t) = \frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2}</math>
 +
 
 +
I contend that the <math>\omega_0=2</math> since both functions are periodic based on it.
 +
 
 +
<math>a_7=\frac{1}{2j}</math>
 +
 
 +
<math> a_{-7} = \frac{-1}{2j}</math>
 +
 
 +
<math> a_1 = \frac{1+3j}{2} </math>
 +
 
 +
<math> a_{-1} = \frac{1+3j}{2} </math>
 +
 
 +
We can write this as a sum:
 +
 
 +
<math> x(t)=\sum^{\infty}_{k = -\infty} a_k  e^{j2k}\,</math>
 +
 
 +
Where
 +
 
 +
<math> a_1=a_{-1}=\frac{1+3j}{2} </math>
 +
 
 +
<math> a_7 = -a_{-7} = \frac{1}{2j} </math>
 +
 
 +
<math> a_k = 0, k \neq 1, -1, 7, -7 </math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:56, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


Periodic CT Signal

The first signal that comes to mind when i think of a periodic CT signal is one involving sines and cosines, so let's work with one of those.

Let $ x(t) = sin(14t)+(1+3j)cos(2t) $

This can also be expressed as

$ x(t) = \frac{e^{14jt}}{2j}-\frac{e^{-14jt}}{2j} + \frac{(1+3j)*e^{2jt}}{2} + \frac{(1+3j)e^{-2jt}}{2} $

I contend that the $ \omega_0=2 $ since both functions are periodic based on it.

$ a_7=\frac{1}{2j} $

$ a_{-7} = \frac{-1}{2j} $

$ a_1 = \frac{1+3j}{2} $

$ a_{-1} = \frac{1+3j}{2} $

We can write this as a sum:

$ x(t)=\sum^{\infty}_{k = -\infty} a_k e^{j2k}\, $

Where

$ a_1=a_{-1}=\frac{1+3j}{2} $

$ a_7 = -a_{-7} = \frac{1}{2j} $

$ a_k = 0, k \neq 1, -1, 7, -7 $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett