(New page: Suppose a DT signal x[n] satisfies 1. x[n] is periodic and period N=8. 2. <math>\sum_{n=0}^{7}x[n]=5</math> 3.<math>a_{k+3} = a_k</math>)
 
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Suppose a DT signal x[n] satisfies
 
Suppose a DT signal x[n] satisfies
  
1. x[n] is periodic and period N=8.
+
1. x[n] is periodic and period N=6.
  
2. <math>\sum_{n=0}^{7}x[n]=5</math>
+
2. <math>\sum_{n=0}^{5}x[n]=5</math>
  
3.<math>a_{k+3} = a_k</math>
+
3.<math>a_{k+2} = a_k</math>
 +
 
 +
4. x[n] has minimum power among all signals that satisfy 1,2,3.
 +
 
 +
Find x[n].
 +
 
 +
 
 +
----
 +
Answer:
 +
 
 +
from 1 we have that x[n]= <math>\sum_{n=0}^{5}a_k e^{-jk \frac {\pi}{3} n}</math>
 +
 
 +
from 2 we have <math>a_0 = avg = \frac {5}{6}</math>
 +
 
 +
from 3 we have <math>a_2 = a_4= a_0 = \frac {5}{6}</math>
 +
 
 +
from 4, power of x[n] = <math>\frac {1}{6} \sum_{n=0}^{5} |x[n]|^2 = \sum_{n=0}^{5} |{a_k}|^2</math>
 +
 
 +
to get a minimum value, <math> a_1=a_3=a_5=0 </math>
 +
 
 +
Thus <math>x[n]=\frac{5}{6} (1+e^{-j \frac {2\pi}{3}n}+e^{-j \frac {4\pi}{3}n})</math>

Latest revision as of 12:08, 25 September 2008

Suppose a DT signal x[n] satisfies

1. x[n] is periodic and period N=6.

2. $ \sum_{n=0}^{5}x[n]=5 $

3.$ a_{k+2} = a_k $

4. x[n] has minimum power among all signals that satisfy 1,2,3.

Find x[n].



Answer:

from 1 we have that x[n]= $ \sum_{n=0}^{5}a_k e^{-jk \frac {\pi}{3} n} $

from 2 we have $ a_0 = avg = \frac {5}{6} $

from 3 we have $ a_2 = a_4= a_0 = \frac {5}{6} $

from 4, power of x[n] = $ \frac {1}{6} \sum_{n=0}^{5} |x[n]|^2 = \sum_{n=0}^{5} |{a_k}|^2 $

to get a minimum value, $ a_1=a_3=a_5=0 $

Thus $ x[n]=\frac{5}{6} (1+e^{-j \frac {2\pi}{3}n}+e^{-j \frac {4\pi}{3}n}) $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin