(New page: CT LTI system: y(t) = 10x(t-1) delta{t})
 
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
== Part A ==
 +
 
CT LTI system:  
 
CT LTI system:  
 +
 
y(t) = 10x(t-1)
 
y(t) = 10x(t-1)
  
delta{t}
+
plugging in delta(t) into the system we get:
 +
 
 +
h(t) = 10delta(t-1)
 +
 
 +
<math>s = j\omega</math>
 +
 
 +
<math>H(s) = \int_{-\infty}^{\infty}h(t)e^{-st}</math>
 +
 
 +
<math>H(s) = \int_{-\infty}^{\infty}10delta(t-1)e^{-st}</math>
 +
 
 +
<math>H(s) = 10\times\int_{-\infty}^{\infty}delta(t-1)e^{-st}</math>
 +
 
 +
<math>H(s) = 10e^{-s}\,</math>
 +
 
 +
 
 +
== Part B ==
 +
 
 +
<math>x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\,</math>
 +
 
 +
<math>y(t) = H(jw)x(t)\,</math>
 +
 
 +
<math>y(t) = 10e^{-jw}\times[4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)]\,</math>
 +
 
 +
<math>y(t) = 10e^{-jw}\times [\frac{2}{j}e^{5*j\pi t} - \frac{2}{j}e^{-5*j\pi t} - \frac{2+j}{2}e^{3*j\pi t} - \frac{2+j}{2}e^{-3*j\pi t}]\,</math>
 +
 
 +
<math>y(t) = \frac{20}{j}e^{5*j\pi t}e^{-jw} - \frac{20}{j}e^{-5*j\pi t}e^{-jw} - (10+5j)e^{3*j\pi t}e^{-jw} - (10+5j)e^{-3*j\pi t}e^{-jw}\,</math>
 +
 
 +
<math>y(t) = \frac{20}{j}e^{5*j\pi (t-1)} - \frac{20}{j}e^{-5*j\pi (t-1)} - (10+5j)e^{3*j\pi (t-1)} - (10+5j)e^{-3*j\pi (t-1)}\,</math>

Latest revision as of 12:27, 25 September 2008

Part A

CT LTI system:

y(t) = 10x(t-1)

plugging in delta(t) into the system we get:

h(t) = 10delta(t-1)

$ s = j\omega $

$ H(s) = \int_{-\infty}^{\infty}h(t)e^{-st} $

$ H(s) = \int_{-\infty}^{\infty}10delta(t-1)e^{-st} $

$ H(s) = 10\times\int_{-\infty}^{\infty}delta(t-1)e^{-st} $

$ H(s) = 10e^{-s}\, $


Part B

$ x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\, $

$ y(t) = H(jw)x(t)\, $

$ y(t) = 10e^{-jw}\times[4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)]\, $

$ y(t) = 10e^{-jw}\times [\frac{2}{j}e^{5*j\pi t} - \frac{2}{j}e^{-5*j\pi t} - \frac{2+j}{2}e^{3*j\pi t} - \frac{2+j}{2}e^{-3*j\pi t}]\, $

$ y(t) = \frac{20}{j}e^{5*j\pi t}e^{-jw} - \frac{20}{j}e^{-5*j\pi t}e^{-jw} - (10+5j)e^{3*j\pi t}e^{-jw} - (10+5j)e^{-3*j\pi t}e^{-jw}\, $

$ y(t) = \frac{20}{j}e^{5*j\pi (t-1)} - \frac{20}{j}e^{-5*j\pi (t-1)} - (10+5j)e^{3*j\pi (t-1)} - (10+5j)e^{-3*j\pi (t-1)}\, $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal