(UNIT IMPULSE RESPONSE OF SYSTEM)
(RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1)
 
(19 intermediate revisions by the same user not shown)
Line 7: Line 7:
 
<math>f(t) = \frac{7x(t)}{3} + \frac{9x(t+8)}{2}\!</math>
 
<math>f(t) = \frac{7x(t)}{3} + \frac{9x(t+8)}{2}\!</math>
 
<br>
 
<br>
 
  
 
== UNIT IMPULSE RESPONSE OF SYSTEM ==
 
== UNIT IMPULSE RESPONSE OF SYSTEM ==
  
To find the unit impulse response of the system, we set <math>g(t) = \delta(t)\! </math>.  Then we obtain the following unit impulse response:
+
To find the unit impulse response of the system, we set <math>x(t) = \delta(t)\! </math>.  Then we obtain the following unit impulse response:
  
  
 
<math>h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\!</math>
 
<math>h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\!</math>
 +
 +
 +
 +
== THE SYSTEM FUNCTION ==
 +
 +
In order to compute the system function H(s), we can simply take the laplace transform of the unit impulse response of the system.  When we take the laplace transform, we find that <math> H(s) = \frac{7}{3} + \frac{9e^{-8jw}}{3}\!</math>
 +
 +
== RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1 ==
 +
 +
Signal used in question 1:
 +
<br>
 +
<math>f(t) = (3+j)cos(2t) + (10+j)sin(7t)\!</math>
 +
<br>
 +
 +
 +
From question 1, we also know that:
 +
<br>
 +
<math>f(t) = (3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\!</math>
 +
<br>
 +
 +
 +
Now, we take the product of the each component of the input function h(t) with the system function H(s), which give us the final answer:
 +
<br>
 +
<math>f(t) = (3+j)\frac{e^{2jt}}{2}(\frac{7}{3} + \frac{9e^{-16j}}{3}) + (3+j)\frac{e^{-2jt}}{2}(\frac{7}{3} + \frac{9e^{16j}}{3}) + (10+j)\frac{e^{7jt}}{2j}(\frac{7}{3} + \frac{9e^{-56j}}{3}) - (10+j)\frac{e^{-7jt}}{2j}(\frac{7}{3} + \frac{9e^{56j}}{3})\!</math>
 +
<br>

Latest revision as of 07:31, 26 September 2008

CT LTI SYSTEM

I chose the following continusous-time linear time invariant system:

$ f(t) = \frac{7x(t)}{3} + \frac{9x(t+8)}{2}\! $

UNIT IMPULSE RESPONSE OF SYSTEM

To find the unit impulse response of the system, we set $ x(t) = \delta(t)\! $. Then we obtain the following unit impulse response:


$ h(t) = \frac{7\delta(t)}{3} + \frac{9\delta(t+8)}{2}\! $


THE SYSTEM FUNCTION

In order to compute the system function H(s), we can simply take the laplace transform of the unit impulse response of the system. When we take the laplace transform, we find that $ H(s) = \frac{7}{3} + \frac{9e^{-8jw}}{3}\! $

RESPONSE OF SYSTEM TO SIGNAL DEFINED IN QUESTION 1

Signal used in question 1:
$ f(t) = (3+j)cos(2t) + (10+j)sin(7t)\! $


From question 1, we also know that:
$ f(t) = (3+j)\frac{e^{2jt}}{2} + (3+j)\frac{e^{-2jt}}{2} + (10+j)\frac{e^{7jt}}{2j} - (10+j)\frac{e^{-7jt}}{2j}\! $


Now, we take the product of the each component of the input function h(t) with the system function H(s), which give us the final answer:
$ f(t) = (3+j)\frac{e^{2jt}}{2}(\frac{7}{3} + \frac{9e^{-16j}}{3}) + (3+j)\frac{e^{-2jt}}{2}(\frac{7}{3} + \frac{9e^{16j}}{3}) + (10+j)\frac{e^{7jt}}{2j}(\frac{7}{3} + \frac{9e^{-56j}}{3}) - (10+j)\frac{e^{-7jt}}{2j}(\frac{7}{3} + \frac{9e^{56j}}{3})\! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett