(New page: == Guess the signal == 1. DT signal x[n] is even. 2. X[n] has a period of 2. 3. <math>\sum_{n=0}^{1}x[n]=3</math> 4. <math>\sum_{n=0}^{1}(-1)^nx[n]=5</math> == Answer == From 2. w...)
 
 
Line 1: Line 1:
 
== Guess the signal ==
 
== Guess the signal ==
  
1. DT signal x[n] is even.
+
1. DT signal x[n] has a period of 2.
  
2. X[n] has a period of 2.
+
2. <math>a_k = 0</math> for |k|>1
  
 
3. <math>\sum_{n=0}^{1}x[n]=3</math>
 
3. <math>\sum_{n=0}^{1}x[n]=3</math>
Line 14: Line 14:
 
== Answer ==
 
== Answer ==
  
From 2. we know the period = 2, therefore:
+
From 1. we know the period = 2, therefore:
  
 
<math>x[n]=\sum_{n=0}^{1}a_ke^{jk(2\pi/2)n}</math>
 
<math>x[n]=\sum_{n=0}^{1}a_ke^{jk(2\pi/2)n}</math>

Latest revision as of 09:39, 25 September 2008

Guess the signal

1. DT signal x[n] has a period of 2.

2. $ a_k = 0 $ for |k|>1

3. $ \sum_{n=0}^{1}x[n]=3 $

4. $ \sum_{n=0}^{1}(-1)^nx[n]=5 $



Answer

From 1. we know the period = 2, therefore:

$ x[n]=\sum_{n=0}^{1}a_ke^{jk(2\pi/2)n} $

From 3. we know that:

$ a_0=\frac{1}{2}\sum_{n=0}^{1}x[n]=\frac{1}{2}3 = \frac{3}{2} $

From 4. we know:

$ a_1=\frac{1}{2}\sum_{n=0}^{1}x[n](-1)^n= \frac{1}{2}\sum_{n=0}^{1}x[n]e^{-jn\pi} = \frac{5}{2} $

Therefore our function x[n]:

$ x[n]=\frac{3}{2}+\frac{5}{2}e^{jn\pi} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett