(New page: ==Periodic Signal Properties == 1. Period is equal to 2 2. <math>a_k = a_{k-2}\,</math> 3. <math>\sum^{5}_{2} x[n] = 0\,</math> 4. <math>\sum^{5}_{2} x[n](-1)^n = 10\,</math> 5. Signal...)
 
(Signal Determination)
 
Line 13: Line 13:
 
From the first property, we can clearly say that N = 2.
 
From the first property, we can clearly say that N = 2.
  
<math>a_0 = \frac{1}{2}\sum^{1}_{0} x[n] e^{-jk\pi 0} = \frac{1}{2}\sum^{1}_{0} x[n]\,</math>
+
<math>a_0 = \frac{1}{2}\sum^{1}_{0} x[n] e^{-jn\pi 0} = \frac{1}{2}\sum^{1}_{0} x[n]\,</math>
  
 
Notice that according to property 3 and 2, we can shift the sum to start from 0, and decrease the total sum values as the signal is periodic, and repeat itself every <math>n = 2\,</math>
 
Notice that according to property 3 and 2, we can shift the sum to start from 0, and decrease the total sum values as the signal is periodic, and repeat itself every <math>n = 2\,</math>
Line 32: Line 32:
  
 
Subtituting the formula, we can see that <math>a_1 = \frac{1}{2}(10) = 5\,</math>
 
Subtituting the formula, we can see that <math>a_1 = \frac{1}{2}(10) = 5\,</math>
 +
 +
We can proceed to calculate the formula for <math>x[n]\,</math>
 +
 +
<math>x[n] = \sum^{1}_{k=0} a_k e^{j\pi k n} = 0 + 5e^{j\pi n} = 5(-1)^n</math>

Latest revision as of 09:32, 25 September 2008

Periodic Signal Properties

1. Period is equal to 2

2. $ a_k = a_{k-2}\, $

3. $ \sum^{5}_{2} x[n] = 0\, $

4. $ \sum^{5}_{2} x[n](-1)^n = 10\, $

5. Signal is Even

Signal Determination

From the first property, we can clearly say that N = 2.

$ a_0 = \frac{1}{2}\sum^{1}_{0} x[n] e^{-jn\pi 0} = \frac{1}{2}\sum^{1}_{0} x[n]\, $

Notice that according to property 3 and 2, we can shift the sum to start from 0, and decrease the total sum values as the signal is periodic, and repeat itself every $ n = 2\, $

$ \sum^{5}_{2} x[n] = \sum^{3}_{0} x[n] = \sum^{1}_{0} x[n] = 0\, $

Thus , $ a_0 = \frac{1}{2}\sum^{1}_{0} x[n] = 0\, $

$ a_1 = \frac{1}{2}\sum^{1}_{0} x[n] e^{-jn\pi 1} = \frac{1}{2}\sum^{1}_{0} x[n]e^{-jn\pi}\, $

Notice that $ e^{-j\pi}\, $ is equivilent to $ -1\, $

Thus $ a_1 = \frac{1}{2}\sum^{1}_{0} x[n] (-1)^n\, $

From property 4, we can modify the properties to make it look similar to our formula.

$ \sum^{5}_{2} x[n](-1)^n = \sum^{3}_{0} x[n](-1)^n = \sum^{1}_{0} x[n](-1)^n = 10\, $

Subtituting the formula, we can see that $ a_1 = \frac{1}{2}(10) = 5\, $

We can proceed to calculate the formula for $ x[n]\, $

$ x[n] = \sum^{1}_{k=0} a_k e^{j\pi k n} = 0 + 5e^{j\pi n} = 5(-1)^n $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010