(New page: ==3. Define a CT LTI system.== a) Obtain the unit impulse response h(t) and the system function H(s) of your system. b) Compute the response of your system to the signal you defined in Q...)
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==3. Define a CT LTI system.==
 
==3. Define a CT LTI system.==
 +
System:
 +
 +
<math>y(t)=x(t-1)</math>
  
 
a) Obtain the unit impulse response h(t) and the system function H(s) of your system.
 
a) Obtain the unit impulse response h(t) and the system function H(s) of your system.
 +
 +
<math> d(t) -->  System --> d(t-1)\ </math>
 +
 +
<math>  h(t)= d(t-1)</math>
 +
 +
<math> H(s)= e^{- s} </math>
  
 
b) Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal.
 
b) Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal.
 +
 +
CT signal :
 +
<math>x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\,</math>
 +
 +
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\,</math>
 +
 +
<math>y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\,</math>
 +
 +
From Question 1:
 +
 +
<math>x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\,</math>
 +
 +
<math>a_1 = 3\,</math>          <math>a_{-1} = 3\,</math>
 +
 +
<math>a_2 = 4\,</math>          <math>a_{-2} = -4\,</math>
 +
 +
<math>x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\,</math>
 +
 +
<math>x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\,</math>
 +
 +
<math>\omega_0\,</math> f=2
 +
 +
<math>x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\,</math>

Latest revision as of 17:42, 26 September 2008

3. Define a CT LTI system.

System:

$ y(t)=x(t-1) $

a) Obtain the unit impulse response h(t) and the system function H(s) of your system.

$ d(t) --> System --> d(t-1)\ $

$ h(t)= d(t-1) $

$ H(s)= e^{- s} $

b) Compute the response of your system to the signal you defined in Question 1 using H(s) and the Fourier series coefficients of your signal.

CT signal : $ x(t) = 6\cos(2\pi t) + 8\sin(4\pi t)\, $

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $

$ y(t) = \sum^{\infty}_{k = -\infty} a_k H(s) e^{jk\pi t}\, $

From Question 1:

$ x(t) = 3e^{j2\pi t}+3e^{-j2\pi t} + 4e^{j4\pi t}-4e^{-j4\pi t}\, $

$ a_1 = 3\, $ $ a_{-1} = 3\, $

$ a_2 = 4\, $ $ a_{-2} = -4\, $

$ x(t) = 3H(s)e^{j2\pi t}+3H(s)e^{-j2\pi t} + 4H(s)e^{j4\pi t}-4H(s)e^{-j4\pi t}\, $

$ x(t) = 3j\omega_0e^{j2\pi t}+3j\omega_0e^{-j2\pi t} + 4j\omega_0e^{j4\pi t}-4j\omega_0e^{-j4\pi t}\, $

$ \omega_0\, $ f=2

$ x(t) = 6je^{j2\pi t}+6je^{-j2\pi t} + 8je^{j4\pi t}-8je^{-j4\pi t}\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett