(New page: == Fourier Series for DT signals == Let <math>x[n]\,</math> be a periodic DT signal with fundamental period N. Then <math>x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n}</math> where ...)
 
 
(6 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
  
where  <math>a_k=\frac{1}{n}\sum_{n=0}^{N-1} x_n e^{-jk\frac{2\pi}{N} n} </math>
+
where  <math>a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} </math>
  
  
 
note that <math>\frac{2\pi}{N} =\omega_0</math>
 
note that <math>\frac{2\pi}{N} =\omega_0</math>
 +
 +
 +
 +
 +
Now consider the signal <math>x[n]=sin(3 \pi n)\,</math>
 +
 +
It's periodic because <math>\frac{\omega_0}{2\pi} = \frac{3\pi}{2\pi} =1.5 </math>  is a rational number.
 +
 +
 +
 +
Notice that <math>x[0]= 1, x[1]=-1, x[2]=1, x[3]=-1  \,</math> etc
 +
 +
 +
Thus the fundamental period is 2.
 +
 +
Then... 
 +
 +
<math>a_0=\frac{1+(-1)}{2}=0 </math>
 +
 +
<math>a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j1\frac{2\pi}{2} n} </math>
 +
 +
<math>a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j\pi n} </math>
 +
 +
<math>a_1=\frac{1}{2}(x[0] e^{0} + x[1]e^{-j\pi})=1 </math>
 +
 +
 +
Finally,
 +
 +
<math>a_{k_{even}}=0\,</math>
 +
 +
<math>a_{k_{odd}}=1\,</math>

Latest revision as of 05:49, 25 September 2008

Fourier Series for DT signals

Let $ x[n]\, $ be a periodic DT signal with fundamental period N.

Then $ x[n]=\sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N} n} $


where $ a_k=\frac{1}{N}\sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N} n} $


note that $ \frac{2\pi}{N} =\omega_0 $



Now consider the signal $ x[n]=sin(3 \pi n)\, $

It's periodic because $ \frac{\omega_0}{2\pi} = \frac{3\pi}{2\pi} =1.5 $ is a rational number.


Notice that $ x[0]= 1, x[1]=-1, x[2]=1, x[3]=-1 \, $ etc


Thus the fundamental period is 2.

Then...

$ a_0=\frac{1+(-1)}{2}=0 $

$ a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j1\frac{2\pi}{2} n} $

$ a_1=\frac{1}{2}\sum_{n=0}^{1} x[n] e^{-j\pi n} $

$ a_1=\frac{1}{2}(x[0] e^{0} + x[1]e^{-j\pi})=1 $


Finally,

$ a_{k_{even}}=0\, $

$ a_{k_{odd}}=1\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn