(New page: ==CT Signal Fourier Coefficients== An easy signal to compute is a sine or cosine based function. I'm trying to look around and find something less trivial but all i can find is functions...)
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
==CT Signal Fourier Coefficients==
+
==DT Signal Fourier Coefficients==
  
An easy signal to compute is a sine or cosine based function. I'm trying to look around and find something less trivial but all i can find is functions that are just sums of complex exponentials, and i can't find something that involves an integral, nor can i find a formula in my notes. I'll ask in class Wednesday
+
Let's make up a signal.
 +
 
 +
<math> x[0] = 0 </math>
 +
 
 +
<math> x[1] = 1 </math>
 +
 
 +
<math> x[2] = 1 </math>
 +
 
 +
<math> x[3] = 0 </math>
 +
 
 +
<math> x[4] = x[0] </math> etc, the function is periodic with period 4
 +
 
 +
Using the formula
 +
 
 +
<math>x[n] = \sum_{k=0}^{N-1} a_k e^{jk \frac{2 \pi}{N} n}</math>, where <math>a_k = \frac{1}{N} \sum_{r=0}^{N-1} x[r] e^{-jk \frac{2 \pi}{N} r}</math>
 +
 
 +
Since the period is 4, N=4.
 +
 
 +
<math>x[n] = \sum_{k=0}^{3} a_k  e^{jk \frac{2 \pi}{4} n}</math>, where <math>a_k = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-jk \frac{2 \pi}{4} r}</math>
 +
 
 +
Now to find the fourier series coefficients:
 +
 
 +
<math>a_0 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(0) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{0} = \frac{1}{4} (x[0] + x[1] + x[2] + x[3]) = \frac{1}{4} (0 + 1 + 1 + 0) = \frac{1}{2}</math>
 +
 
 +
<math>a_1 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(1) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j \frac{\pi}{2} r} = \frac{1}{4} (x[0] e^{0} + x[1] e^{-j \frac{\pi}{2}} + x[2] e^{-j \pi}+ x[3] e^{-j \frac{3 \pi}{2} }) </math>
 +
 
 +
<math>= \frac{1}{4} (0(0) + 1(-j) + 1*-1 + 0*i) = \frac{-1-j}{4}</math>
 +
 
 +
<math>a_2 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(2) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j \pi r} = \frac{1}{4} (x[0] e^{0} + x[1] e^{-j \pi} + x[2] ee^{-j 2 \pi}+ x[3] e^{-j 3 \pi}) </math>
 +
 
 +
<math>= \frac{1}{4} (0  + 1 * -1 + 1 * 1 + 0 ) = 0 </math>
 +
 
 +
<math>a_3 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(3) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j \frac{3 \pi}{2} r} = \frac{1}{4} (x[0] e^{0} + x[1] e^{-j \frac{3 \pi}{2}} + x[2] e^{-j 3 \pi}+ x[3] e^{-j \frac{9 \pi}{2} }) </math>
 +
 
 +
<math> = \frac{1}{4} (0 + 1(j) + 1 (-1) + 0) = \frac{j-1}{4} </math>

Latest revision as of 16:36, 25 September 2008

DT Signal Fourier Coefficients

Let's make up a signal.

$ x[0] = 0 $

$ x[1] = 1 $

$ x[2] = 1 $

$ x[3] = 0 $

$ x[4] = x[0] $ etc, the function is periodic with period 4

Using the formula

$ x[n] = \sum_{k=0}^{N-1} a_k e^{jk \frac{2 \pi}{N} n} $, where $ a_k = \frac{1}{N} \sum_{r=0}^{N-1} x[r] e^{-jk \frac{2 \pi}{N} r} $

Since the period is 4, N=4.

$ x[n] = \sum_{k=0}^{3} a_k e^{jk \frac{2 \pi}{4} n} $, where $ a_k = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-jk \frac{2 \pi}{4} r} $

Now to find the fourier series coefficients:

$ a_0 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(0) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{0} = \frac{1}{4} (x[0] + x[1] + x[2] + x[3]) = \frac{1}{4} (0 + 1 + 1 + 0) = \frac{1}{2} $

$ a_1 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(1) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j \frac{\pi}{2} r} = \frac{1}{4} (x[0] e^{0} + x[1] e^{-j \frac{\pi}{2}} + x[2] e^{-j \pi}+ x[3] e^{-j \frac{3 \pi}{2} }) $

$ = \frac{1}{4} (0(0) + 1(-j) + 1*-1 + 0*i) = \frac{-1-j}{4} $

$ a_2 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(2) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j \pi r} = \frac{1}{4} (x[0] e^{0} + x[1] e^{-j \pi} + x[2] ee^{-j 2 \pi}+ x[3] e^{-j 3 \pi}) $

$ = \frac{1}{4} (0 + 1 * -1 + 1 * 1 + 0 ) = 0 $

$ a_3 = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j(3) \frac{\pi}{2} r} = \frac{1}{4} \sum_{r=0}^{3} x[r] e^{-j \frac{3 \pi}{2} r} = \frac{1}{4} (x[0] e^{0} + x[1] e^{-j \frac{3 \pi}{2}} + x[2] e^{-j 3 \pi}+ x[3] e^{-j \frac{9 \pi}{2} }) $

$ = \frac{1}{4} (0 + 1(j) + 1 (-1) + 0) = \frac{j-1}{4} $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach